請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77374完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 常玉強(Yuh-Chyang Charng) | |
| dc.contributor.author | Chung-Yu Chen | en |
| dc.contributor.author | 陳中宇 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:58:47Z | - |
| dc.date.available | 2021-07-10T21:58:47Z | - |
| dc.date.copyright | 2021-03-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-19 | |
| dc.identifier.citation | Aharoni, A., Galili, G. (2011). Metabolic engineering of the plant primary–secondary metabolism interface. Current Opinion in Biotechnology, 22(2), 239-244. Anzalone, A. V., Randolph, P. B., Davis, J. R. et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149-157. Baylis, A. D. (2000). Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Management Science: formerly Pesticide Science, 56(4), 299-308. Bourgaud, F., Gravot, A., Milesi, S., Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant Science, 161(5), 839-851. Busse, M. D., Ratcliff, A. W., Shestak, C. J., Powers, R. F. (2001). Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biology and Biochemistry, 33(12-13), 1777-1789. Butt, H., Rao, G. S., Sedeek, K., Aman, R., Kamel, R., Mahfouz, M. (2020). Engineering herbicide resistance via prime editing in rice. Plant Biotechnology Journal. Charng, Y.-C., Li, K.-T., Tai, H.-K., Lin, N.-S., Tu, J. (2008). An inducible transposon system to terminate the function of a selectable marker in transgenic plants. Molecular Breeding, 21(3), 359-368. Chen, K., Wang, Y., Zhang, R., Zhang, H., Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667-697. De Carvalho, L. B., Alves, P. L. d. C. A., González-Torralva, F. et al. (2012). Pool of resistance mechanisms to glyphosate in Digitaria insularis. Journal of Agricultural and Food Chemistry, 60(2), 615-622. Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., Schönbrunn, E. (2006). Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences, 103(35), 13010-13015. Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., Liu, D. R. (2017). Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471. González-Torralva, F., Rojano-Delgado, A. M., de Castro, M. D. L., Mülleder, N., De Prado, R. (2012). Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology, 169(17), 1673-1679. He, L., Xiufeng, L., Yang, X., Hualong, L., Mingliang, H., Xiaojie, T., . . . Jie, Y. (2020). High-Efficiency Reduction of Rice Amylose Content via CRISPR/Cas9-Mediated Base Editing. Rice Science, 4. Healy-Fried, M. L., Funke, T., Priestman, M. A., Han, H., Schönbrunn, E. (2007). Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. Journal of Biological Chemistry, 282(45), 32949-32955. Herrmann, K. M. (1995). The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiology, 107(1), 7. Howe, A. R., Gasser, C. S., Brown, S. M., Padgette, S. R., Hart, J. et al. (2002). Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Molecular Breeding, 10(3), 153-164. Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., . . . Lin, Z.(2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556(7699), 57-63. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids research, 41(20), e188-e188. Jiang, Y.-Y., Chai, Y.-P., Lu, M.-H., Han, X.-L., Lin, Q., Zhang, Y. et al. (2020). Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biology, 21(1), 1-10. Klee, H. J., Muskopf, Y. M., Gasser, C. S. (1987). Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Molecular and General Genetics MGG, 210(3), 437-442. Knott, G. J., Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. Science, 361(6405), 866-869. Lewis, J., Johnson, K. A., Anderson, K. S. (1999). The catalytic mechanism of EPSP synthase revisited. Biochemistry, 38(22), 7372-7379. Li, H., Li, J., Chen, J., Yan, L., Xia, L. (2020). Precise modifications of both exogenous and endogenous genes in rice by prime editing. Molecular Plant, 13(5), 671-674. Li, J., Peng, Q., Han, H., Nyporko, A., Kulynych, T., Yu, Q., Powles, S. (2018). Glyphosate resistance in Tridax procumbens via a novel EPSPS Thr-102-Ser substitution. Journal of Agricultural and Food Chemistry, 66(30), 7880-7888. Li, T., Liu, B., Spalding, M. H., Weeks, D. P., Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30(5), 390. Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., . . . Doman, J. L. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582-585. Luo, M., Gilbert, B., Ayliffe, M. (2016). Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Reports, 35(7), 1439-1450. Marzec, M., Brąszewska-Zalewska, A., Hensel, G. (2020). Prime Editing: A New Way for Genome Editing. Trends in Cell Biology. McGinn, J., Marraffini, L. A. (2019). Molecular mechanisms of CRISPR–Cas spacer acquisition. Nature Reviews Microbiology, 17(1), 7-12. Molla, K. A., Yang, Y. (2019). CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends in biotechnology, 37(10), 1121- 1142. Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S. et al. (2018). Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 361(6408), 1259-1262. Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, X., Fuchs, R. L. et al. (1996). New weed control opportunities: development of soybeans with a Roundup Ready™ gene. Herbicideresistant Crops, 53-84. Pan, L., Yu, Q., Han, H., Mao, L., Nyporko, A., Fan, L. et al. (2019). Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiology, 181(4), 1519-1534. Perotti, V. E., Larran, A. S., Palmieri, V. E., Martinatto, A. K., Alvarez, C. E., Tuesca, D., Permingeat, H. R. (2019). A novel triple amino acid substitution in the EPSPS found in a high‐level glyphosate‐resistant Amaranthus hybridus population from Argentina. Pest management science, 75(5), 1242-1251. Priestman, M. A., Healy, M. L., Becker, A., Alberg, D. G., Bartlett, P. A., Lushington, G. H., Schönbrunn, E. (2005). Interaction of phosphonate analogues of the tetrahedral reaction intermediate with 5-enolpyruvylshikimate-3-phosphate synthase in atomic detail. Biochemistry, 44(9), 3241-3248. Ryu, S.-M., Koo, T., Kim, K., Lim, K., Baek, G., Kim, S.-T., et al. (2018). Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nature Biotechnology, 36(6), 536-539. Sammons, R. D., Gaines, T. A. (2014). Glyphosate resistance: state of knowledge. Pest management science, 70(9), 1367-1377. Santos-Sánchez, N. F., Salas-Coronado, R., Hernández-Carlos, B., Villanueva- Cañongo, C. (2019). Shikimic acid pathway in biosynthesis of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds: IntechOpen. Schneider, K., Schiermeyer, A., Dolls, A., Koch, N., Herwartz, D., Kirchhoff, J.et al (2016). Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut. Plant Biotechnology Journal, 14(4), 1151-1160. Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E. et al. (1986). Engineering herbicide tolerance in transgenic plants. Science, 233(4762), 478-481. Steinrücken, H. C., Schulz, A., Amrhein, N., Porter, C. A., Fraley, R. T. (1986). Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase in a glyphosate-tolerant Petunia hybrida cell line. Archives of biochemistry and biophysics, 244(1), 169-178. Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M.et al. (2018). Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Reports, 37(9), 1353-1356. Xu, R., Li, J., Liu, X., Shan, T., Qin, R., Wei, P. (2020). Development of Plant Prime-Editing Systems for Precise Genome Editing. Plant Communications, 1(3). Xu, R., Yang, Y., Qin, R., Li, H., Qiu, C., Li, L., . . . Yang, J. (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of genetics and genomics= Yi chuan xue bao, 43(8), 529. Xu, W., Zhang, C., Yang, Y., Zhao, S., Kang, G., He, X. et al. (2020). Versatile nucleotides substitution in plant using an improved prime editing system. Molecular plant, 13(5), 675-678. Yu, Q., Jalaludin, A., Han, H., Chen, M., Sammons, R. D., Powles, S. B. (2015). Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3 phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiology, 167(4), 1440-1447. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K. et al. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature communications, 7(1), 1-8. Zhu, H., Li, C., Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 1-17. Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y. et al. (2018). Efficient C to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 36(10), 950-953. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77374 | - |
| dc.description.abstract | 基因編輯技術可以精準地在目標 DNA產生期望之插入(insertion)、刪除(deletion)以及取代(substitution)突變 ,而CRISPR/Cas9為當今基因編輯最有潛力的工具,但先前研究多僅利用Cas9蛋白產生雙股DNA斷裂,進而選擇修復錯誤之個體並觀察基因剔除(knock-out)產生的結果。最近發展的先導編輯(prime editing)技術可利用連接反轉錄酶的Cas9融合蛋白直接於指定位置創造期望突變。 本研究利用先導編輯使水稻內生EPSPS基因產生新功能(gain-of-function),透過取代其中兩個胺基酸使水稻由對嘉磷塞敏感型轉為抵抗型,兩點的突變分別為第172個glycine突變為alanine及第215個glycine為aspartic acid。透過農桿菌轉殖法,於台農67號水稻轉入辨識突變位置的pegRNA、兩位點各自的nicking spacer及nCas9-RT基因。最終成功獲得6株轉殖系,其中3株更在其中G215突變位置成功偵測到期望突變的發生 。 | zh_TW |
| dc.description.abstract | Gene editing techniques can achieve specific and precise gene modification by DNA insertion, deletion or substitution. CRISPR/Cas9 system has been proven as the most powerful tool for genome modifications, while most efforts results in “knock-out” of a gene because of DNA double strands break by Cas9. Recently, “Prime editing” was developed that directly writes desired codon into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase. In this study, PE (prime editing) technique was used to create a “gain-of-function mutant” EPSPS gene of rice for glyphosate resistant by replacing two amino acids. The replacing indicates the codon for the glycine residue at position 172 was changed to encode an alanine residue and the codon for the glycine at position 215 was changed to encode an aspartic acid residue. The specific pegRNA as well as nicking RNA constructs were synthesized, together with nCas9-RT gene, and transformed into rice TNG67. Successful transgenic rice plants were confirmed and three of them have been detected expected point mutation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:58:47Z (GMT). No. of bitstreams: 1 U0001-1901202112335600.pdf: 2902852 bytes, checksum: 9a6b182eb3bb291865144ac87e022eb1 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………… i 中文摘要…………………………………………………………… ii 英文摘要………………………………………………………… iii 目錄………………………………………………………………… iv 表目錄…………………………………………………………… vi 圖目錄………………………………………………………… vii 壹. 前言……………………………………………………………… 1 一. 莽草酸途徑 (shikimic acid pathway)…………………… 1 二. EPSPS基因與嘉磷塞 (glyphosate) 抗性育種…………… 2 三. 基因編輯技術的發展及其優缺點……………………… 3 四. Knock-in的重要性……………………………… 6 五. 透過prime editing技術編輯水稻EPSPS基因……… 7 貳. 材料方法……………………………………………………… 8 一. 大腸桿菌勝任細胞製備…………………………………… 8 二. 質粒的大腸桿菌轉形………………………………………… 8 三. 大腸桿菌質粒DNA的萃取與純化………………………… 8 四. 水稻農桿菌轉殖……………………………………………… 9 五. 水稻DNA萃取…………………………………………… 11 六. 構築設計……………………………………………… 11 七. PCR檢測轉殖株…………………………………… 13 八. 嘉磷塞濃度試驗……………………………………… 13 參. 結果…………………………………………………… 14 一. pPEEP構築設計……………………………………… 14 二. 水稻轉殖與篩選T0轉殖株………………………………… 15 三. 檢測T0轉殖株EPSPS基因發生之鹼基置換…………… 15 四. 水稻癒傷組織嘉磷塞抗性測試…………………………… 15 肆. 討論……………………………………………………………… 16 伍. 參考文獻………………………………………………………… 19 陸. 附錄 - 溶液與培養基………………………………………… 25 | |
| dc.language.iso | zh-TW | |
| dc.subject | Knock-in | zh_TW |
| dc.subject | 先導編輯 | zh_TW |
| dc.subject | 嘉磷塞 | zh_TW |
| dc.subject | EPSPS | zh_TW |
| dc.subject | CRISPR | zh_TW |
| dc.subject | 精準育種 | zh_TW |
| dc.subject | Prime editing | en |
| dc.subject | Knock-in | en |
| dc.subject | Precise breeding | en |
| dc.subject | CRISPR | en |
| dc.subject | EPSPS | en |
| dc.subject | Glyphosate | en |
| dc.title | 應用先導編輯修飾水稻EPSPS基因 | zh_TW |
| dc.title | Modification of Rice EPSPS Gene by Prime Editing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 杜 鎮 (Jenn Tu),洪傳揚(Chwan-Yang Hong) | |
| dc.subject.keyword | 先導編輯,嘉磷塞,EPSPS,CRISPR,精準育種,Knock-in, | zh_TW |
| dc.subject.keyword | Prime editing,Glyphosate,EPSPS,CRISPR,Precise breeding,Knock-in, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU202100090 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-01-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1901202112335600.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
