Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77361
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉zh_TW
dc.contributor.advisorKen-Tsung Wongen
dc.contributor.author林宗良zh_TW
dc.contributor.authorZong-Liang Linen
dc.date.accessioned2021-07-10T21:58:11Z-
dc.date.available2024-07-01-
dc.date.copyright2019-07-31-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation第一章
[1] Pope, M.;Kallmann, H. P.;Magnante, P., Journal of Chemical Physics 1963, 38, 2042.
[2] Helfrich, W.;Schneider, W. G., Physical Review Letters 1965, 14, 229-231.
[3] Xu, H.;Chen, R.;Sun, Q.;Lai, W.;Su, Q.;Huang, W.;Liu, X., Chemical Society Reviews 2014, 43, 3259-3302.
[4] Koch, M.;Perumal, K.;Blacque, O.;Garg, J. A.;Saiganesh, R.;Kabilan, S.;Balasubramanian, K. K.;Venkatesan, K., Angewandte Chemie International Edition 2014, 53, 6378-6382.
[5] Baldo, M. A.;O'Brien, D. F.;You, Y.;Shoustikov, A.;Sibley, S.;Thompson, M. E.;Forrest, S. R., Nature 1998, 395, 151-154.
[6] Tuong Ly, K.;Chen-Cheng, R.-W.;Lin, H.-W.;Shiau, Y.-J.;Liu, S.-H.;Chou, P.-T.;Tsao, C.-S.;Huang, Y.-C.;Chi, Y., Nature Photonics 2016, 11, 63-68.
[7] Ganzorig, C.;Fujihira, M., Applied Physics Letters 2002, 81, 3137-3139.
[8] Kondakov, D. Y.;Pawlik, T. D.;Hatwar, T. K.;Spindler, J. P., Journal of Applied Physics 2009, 106, 124510.
[9] Fukagawa, H.;Shimizu, T.;Ohbe, N.;Tokito, S.;Tokumaru, K.;Fujikake, H., Organic Electronics 2012, 13, 1197-1203.
[10] Endo, A.;Ogasawara, M.;Takahashi, A.;Yokoyama, D.;Kato, Y.;Adachi, C., Advanced Materials 2009, 21, 4802-4806.
[11] Uoyama, H.;Goushi, K.;Shizu, K.;Nomura, H.;Adachi, C., Nature 2012, 492, 234-238.
[12] Parker, C. A.;Hatchard, C. G., Transactions of the Faraday Society 1961, 57, 1894-1904.
[13] Blasse, G.;McMillin, D. R., Chemical Physics Letters 1980, 70, 1-3.
[14] Berberan-Santos, M. N.;Garcia, J. M. M., Journal of the American Chemical Society 1996, 118, 9391-9394.
[15] Li, J.;Nakagawa, T.;MacDonald, J.;Zhang, Q.;Nomura, H.;Miyazaki, H.;Adachi, C., Advanced Materials 2013, 25, 3319-3323.
[16] Wang, H.;Xie, L.;Peng, Q.;Meng, L.;Wang, Y.;Yi, Y.;Wang, P., Advanced Materials 2014, 26, 5198-5204.
[17] Zhang, Q.;Li, B.;Huang, S.;Nomura, H.;Tanaka, H.;Adachi, C., Nature Photonics 2014, 8, 326-332.
[18] Endo, A.;Sato, K.;Yoshimura, K.;Kai, T.;Kawada, A.;Miyazaki, H.;Adachi, C., Applied Physics Letters 2011, 98, 083302.
[19] Tao, Y.;Yuan, K.;Chen, T.;Xu, P.;Li, H.;Chen, R.;Zheng, C.;Zhang, L.;Huang, W., Advanced Materials 2014, 26, 7931-7958.
[20] Goushi, K.;Yoshida, K.;Sato, K.;Adachi, C., Nature Photonics 2012, 6, 253-258.
[21] Hung, W.-Y.;Fang, G.-C.;Chang, Y.-C.;Kuo, T.-Y.;Chou, P.-T.;Lin, S.-W.;Wong, K.-T., ACS Applied Materials & Interfaces 2013, 5, 6826–6831.
[22] Hung, W.-Y.;Wang, T.-C.;Chiang, P.-Y.;Peng, B.-J.;Wong, K.-T., ACS Applied Materials & Interfaces 2017, 9, 7355−7361.
[23] Hung, W.-Y.;Chiang, P.-Y.;Lin, S.-W.;Tang, W.-C.;Chen, Y.-T.;Liu, S.-H.;Chou, P.-T.;Hung, Y.-T.;Wong, K.-T., ACS Applied Materials & Interfaces 2016, 8, 4811-4818.
[24] Sarma, M.;Wong, K.-T., ACS Applied Materials & Interfaces 2018, 10, 19279-19304.
[25] Liu, X.-K.;Chen, Z.;Zheng, C.-J.;Liu, C.-L.;Lee, C.-S.;Li, F.;Ou, X.-M.;Zhang, X.-H., Advanced Materials 2015, 27, 2378-2383.
[26] Goushi, K.;Yoshida, K.;Sato, K.;Adachi, C., Nature Photonics 2012, 6, 253.
[27] Nishimoto, T.;Yasuda, T.;Lee, S. Y.;Kondo, R.;Adachi, C., Materials Horizons 2014, 1, 264-269.
[28] Liu, X.-K.;Chen, Z.;Zheng, C.-J.;Chen, M.;Liu, W.;Zhang, X.-H.;Lee, C.-S., Advanced Materials 2015, 27, 2025-2030.
[29] Holmes, R. J.;D’Andrade, B. W.;Forrest, S. R.;Ren, X.;Li, J.;Thompson, M. E., Applied Physics Letters 2003, 83, 3818-3820.
第二章
[1] Sarma, M.;Wong, K.-T., ACS Applied Materials & Interfaces 2018, 10, 19279-19304.
[2] Chen, H.-F.;Wang, T.-C.;Lin, S.-W.;Hung, W.-Y.;Dai, H.-C.;Chiu, H.-C.;Wong, K.-T.;Ho, M.-H.;Cho, T.-Y.;Chen, C.-W.;Lee, C.-C., Journal of Materials Chemistry 2012, 22, 15620-15627.
[3] Tanaka, D.;Sasabe, H.;Lil, Y.-J.;Sui, S.-J.;Takeda, T.;Kido, J., Japanese Journal of Applied Physics 2006, 46, L10.
[4] Sasabe, H.;Chiba, T.;Su, S.-J.;Pu, Y.-J.;Nakayama, K.-i.;Kido, J., Chemical Communications 2008, 0, 5821-5823
[5] Yokoyama, D.;Sasabe, H.;Furukawa, Y.;Adachi, C.;Kido, J., Advanced Functional Materials 2011, 21, 1375–1382.
[6] Su, S.-J.;Caib, C.;Kido, J., Journal of Materials Chemistry 2012, 22, 3447–3456.
[7] Park, Y.-S.;Kim, K.-H.;Kim, J.-J., Applied Physics Letters 2013, 102, 153306.
[8] Kim, K.-H.;Yoo, S.-J.;Kim, J.-J., Chemistry of Materials 2016, 28, 1936−1941.
[9] Zhao, J.;Du, X.;Yuan, S.;Zheng, C.;Lin, H.;Tao, S., Organic Electronics 2017, 43, 136-141.
[10] Seino, Y.;Inomata, S.;Sasabe, H.;Pu, Y.-J.;Kido, J., Advanced Materials 2016, 28, 2638–2643.
[11] Su, S.-J.;Sasabe, H.;Pu, Y.-J.;Nakayama, K.-i.;Kido, J., Advanced Materials 2010, 22, 3311-3316.
[12] Martinez, A. G.;Fernández, A. H.;Jiménez, F. M., Journal of Organic Chemistry 1992, 57, 1627-1630.
[13] Li, N.;Wang, P.;Lai, S.-L.;Liu, W.;Lee, C.-S.;Lee, S.-T.;Liu, Z., Advanced Materials 2010, 22, 527-530.
[14] Hung, W.-Y.;Chiang, P.-Y.;Lin, S.-W.;Tang, W.-C.;Chen, Y.-T.;Liu, S.-H.;Chou, P.-T.;Hung, Y.-T.;Wong, K.-T., ACS Applied Materials & Interfaces 2016, 8, 4811−4818.
[15] Yin, X.;Chen, D.;Peng, Q.;Xiang, Y.;Xie, G.;Zhu, Z.;Zhong, C.;Li, F.;Su, S.;Yang, C., Journal of Materials Chemistry C 2016, 4, 1482-1489.
[16] Hung, W.-Y.;Fang, G.-C.;Chang, Y.-C.;Kuo, T.-Y.;Chou, P.-T.;Lin, S.-W.;Wong, K.-T., ACS Applied Materials & Interfaces 2013, 5, 6826-6831.
[17] Lin, T.-C.;Sarma, M.;Chen, Y.-T.;Liu, S.-H.;Lin, K.-T.;Chiang, P.-Y.;Chuang, W.-T.;Liu, Y.-C.;Hsu, H.-F.;Hung, W.-Y.;Tang, W.-C.;Wong, K.-T.;Chou, P.-T., Nature Communications 2018, 9, 3111.
[18] Liu, M.;Su, S.-J.;Jung, M.-C.;Qi, Y.;Zhao, W.-M.;Kido, J., Chemistry of Materials 2012, 24, 3817-3827.
第三章
[1] Tanaka, D.;Takeda, T.;Chiba, T.;Watanabe, S.;Kido, J., Chemistry Letters 2007, 36, 262-263.
[2] Tanaka, D.;Agata, Y.;Takeda, T.;Watanabe, S.;Kido, J., Japanese Journal of Applied Physics 2007, 46, L117.
[3] Su, S.-J.;Chiba, T.;Takeda, T.;Kido, J., Advanced Materials 2008, 20, 2125–2130.
[4] Ruden, A. L. V.;Cosimbescu, L.;Polikarpov, E.;Koech, P. K.;Swensen, J. S.;Wang, L.;Darsell, J. T.;Padmaperuma, A. B., Chemistry of Materials 2010, 22, 5678–5686.
[5] Lim, H.;Shin, H.;Kim, K.-H.;Seung-Jun Yoo;Huh, J.-S.;Kim, J.-J., ACS Applied Materials & Interfaces 2017, 9, 37883-37887.
[6] Su, S.-J.;Sasabe, H.;Takeda, T.;Kido, J., Chemistry of Materials 2008, 20, 1691–1693.
[7] Su, S.-J.;Caib, C.;Kido, J., Journal of Materials Chemistry 2012, 22, 3447–3456.
[8] Su, S.-J.;Sasabe, H.;Pu, Y.-J.;Nakayama, K.-i.;Kido, J., Advanced Materials 2010, 22, 3311-3316.
[9] Watanabe, Y.;Yokoyama, D.;Koganezawa, T.;Katagiri, H.;Ito, T.;Ohisa, S.;Chiba, T.;Sasabe, H.;Kido, J., Advanced Materials 2019, 31, 1808300.
[10] Sarma, M.;Wong, K.-T., ACS Applied Materials & Interfaces 2018, 10, 19279–19304.
第四章
[1] Yokoyama, D., Journal of Materials Chemistry 2011, 21, 19187-19202.
[2] Song, J.;Kim, K.-H.;Kim, E.;Moon, C.-K.;Kim, Y.-H.;Kim, J.-J.;Yoo, S., Nature Communications 2018, 9, 3207.
[3] Watanabe, Y.;Yokoyama, D.;Koganezawa, T.;Katagiri, H.;Ito, T.;Ohisa, S.;Chiba, T.;Sasabe, H.;Kido, J., Advanced Materials 2019, 31, 1808300.
[4] Yokoyama, D.;Sakaguchi, A.;Suzuki, M.;Adachi, C., Applied Physics Letters 2009, 95, 243303.
[5] Yokoyama, D.;Setoguchi, Y.;Sakaguchi, A.;Suzuki, M.;Adachi, C., Advanced Functional Materials 2010, 20, 386-391.
[6] Frischeisen, J.;Yokoyama, D.;Endo, A.;Adachi, C.;Brütting, W., Organic Electronics 2011, 12, 809-817.
[7] Liu, M.;Komatsu, R.;Cai, X.;Hotta, K.;Sato, S.;Liu, K.;Chen, D.;Kato, Y.;Sasabe, H.;Ohisa, S.;Suzuri, Y.;Yokoyama, D.;Su, S.-J.;Kido, J., Chem. Mater. 2017, 29, 8630-8636.
[8] Lin, H.-W.;Lin, C.-L.;Chang, H.-H.;Lin, Y.-T.;Wu, C.-C.;Chen, Y.-M.;Chen, R.-T.;Chien, Y.-Y.;Wong, K.-T., Journal of Applied Physics 2004, 95, 881-886.
[9] Aonuma, M.;Oyamada, T.;Sasabe, H.;Miki, T.;Adachi, C., Applied Physics Letters 2007, 90, 183503.
[10] Yokoyama, D.;Sakaguchi, A.;Suzuki, M.;Adachi, C., Organic Electronics 2009, 10, 127-137.
[11] Yokoyama, D.;Sakaguchi, A.;Suzuki, M.;Adachi, C., Applied Physics Letters 2008, 93, 173302.
[12] Wang, S.;Sawada, T.;Fujita, M., Chem. Commun. 2016, 52, 11653-11656.
[13] Ganesan, P.;Ranganathan, R.;Chi, Y.;Liu, X.-K.;Lee, C.-S.;Liu, S.-H.;Lee, G.-H.;Lin, T.-C.;Chen, Y.-T.;Chou, P.-T., Chemistry – A European Journal 2017, 23, 2858-2866.
[14] Liu, M.;Su, S.-J.;Jung, M.-C.;Qi, Y.;Zhao, W.-M.;Kido, J., Chemistry of Materials 2012, 24, 3817-3827.
[15] Song, W.;Yeob Lee, J.;Cho, Y. J.;Yu, H.;Aziz, H.;Mun Lee, K., Vol. 5, Advanced Science, 2017.
[16] Xu, T.;Zhou, J.-G.;Huang, C.-C.;Zhang, L.;Fung, M.-K.;Murtaza, I.;Meng, H.;Liao, L.-S., ACS Applied Materials & Interfaces 2017, 9, 10955-10962.
[17] Cui, L.-S.;Liu, Y.;Yuan, X.-D.;Li, Q.;Jiang, Z.-Q.;Liao, L.-S., J. Mater. Chem. C 2013, 1, 8177-8185.
[18] Hung, W.-Y.;Wang, T.-C.;Chiang, P.-Y.;Peng, B.-J.;Wong, K.-T., ACS Applied Materials & Interfaces 2017, 9, 7355−7361.
第五章
[1] Hung, W.-Y.;Chiang, P.-Y.;Lin, S.-W.;Tang, W.-C.;Chen, Y.-T.;Liu, S.-H.;Chou, P.-T.;Hung, Y.-T.;Wong, K.-T., ACS Applied Materials & Interfaces 2016, 8, 4811−4818.
[2] Hung, W.-Y.;Wang, T.-C.;Chiang, P.-Y.;Peng, B.-J.;Wong, K.-T., ACS Applied Materials & Interfaces 2017, 9, 7355−7361.
[3] Hung, W.-Y.;Fang, G.-C.;Chang, Y.-C.;Kuo, T.-Y.;Chou, P.-T.;Lin, S.-W.;Wong, K.-T., ACS Applied Materials & Interfaces 2013, 5, 6826-6831.
[4] Klenkler, R. A.;Aziz, H.;c, A. T.;Popovic, Z. D.;Xu, G., Organic Electronics 2008, 9, 285–290.
[5] Matsushima, T.;Takamori, M.;Miyashita, Y.;Honma, Y.;Tanaka, T.;Aihara, H.;Murata, H., Organic Electronics 2010, 11, 16–22.
[6] Su, S.-J.;Sasabe, H.;Pu, Y.-J.;Nakayama, K.-i.;Kido, J., Advanced Materials 2010, 2010, 3311–3316.
[7] Chen, D.;Liu, K.;Gan, L.;Liu, M.;Gao, K.;Xie, G.;Ma, Y.;Cao, Y.;Su, S.-J., Advanced Materials 2016, 28, 6758–6765.
[8] Chen, H.-F.;Wang, T.-C.;Lin, S.-W.;Hung, W.-Y.;Dai, H.-C.;Chiu, H.-C.;Wong, K.-T.;Ho, M.-H.;Cho, T.-Y.;Chen, C.-W.;Lee, C.-C., Journal of Materials Chemistry 2012, 22, 15620-15627.
[9] Zhao, B.;Zhang, T.;Chu, B.;Li, W.;Su, Z.;Wu, H.;Yan, X.;Jin, F.;Gao, Y.;Liu, C., Scientific reports 2015, 5, 10697.
[10] Yin, X.;Chen, D.;Peng, Q.;Xiang, Y.;Xie, G.;Zhu, Z.;Zhong, C.;Li, F.;Su, S.;Yang, C., Journal of Materials Chemistry C 2016, 4, 1482-1489.
[11] Sun, C.;Hudson, Z. M.;Helander, M. G.;Lu, Z.-H.;Wang, S., Organometallics 2011, 5552−5555.
[12] Sarma, M.;Wong, K.-T., ACS Applied Materials & Interfaces 2018, 10, 19279–19304.
[13] Song, W.;Yeob Lee, J.;Cho, Y. J.;Yu, H.;Aziz, H.;Mun Lee, K., Vol. 5, Advanced Science, 2017.
[14] Cui, L.-S.;Liu, Y.;Yuan, X.-D.;Li, Q.;Jiang, Z.-Q.;Liao, L.-S., Journal of Materials Chemistry C 2013, 1, 8177-8185.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77361-
dc.description.abstract近年來,具熱激活化延遲螢光 (Thermally Activated Delayed fluorescence, TADF) 分子慢慢受到矚目,因其不需使用到昂貴的稀有金屬又對環境友善,所以比磷光分子更受到大家關注。然而,傳統的TADF分子是運用分子內的電荷轉移來達到放光的效果,所以在分子設計上相對困難。在近期,科學家發展出了以物理性混摻的方式創造出激發錯合物以達到放光的效果,因其電子予體和電子受體可以分開設計,所以使合成步驟大大的簡化。另外,激發錯合物具有很小的單重態和三重態能量差,一樣具有熱激活化螢光的現象。
在本論文中主要設計與合成一系列具有良好的電子注入能力的電子傳輸材料,並與適當的電子予體搭配運用於激發錯合體上。並將新的激發錯合體當作放光層或者主層材料。透過光物理分析及元件應用,探討分子結構、特性與元件的效能之間的關係。第一部分和第二部分分別為以嘧啶和吡啶為核心,並在2,4,6取代的苯環間位上引入強拉電子基團 (包括吡啶、嘧啶、氰基、吡唑與磷氧官能基) 去減少分子間的π共軛,合成出一系列的星狀電子傳輸型材料。並透過引入缺電子性的基團,使得這些材料展現出良好的電子注入能力與電子傳輸性質。
而第三部分為保留原有的嘧啶為中心,在2號位置分別引入苯環和吡啶,並且從原本的星狀分子變成線狀分子,希望藉由提高水平方向的躍遷偶極,進而提高整體元件的出光率,使元件效率可以提高。
第四部份為以1,3,5-三嗪為核心,並且只在2號取代的苯環的兩個間位上引入強拉電子基團,探討分別引入氯原子和氰基之後的差別,另外,分別引入不同的拉電子性基團,藉由拉電子性基團去提升整體的電子傳輸效率。此四個部分的電子傳輸材料分別選用適當的電洞傳輸層進行搭配,探討形成激發錯合物的效率並將其運用在發光層或主層材料上。
zh_TW
dc.description.abstractIn recent years, Thermal Activated Delayed fluorescence, TADF materials have attracted the scientist’s attention gradually. It is environmental-friendly and no need to use rarely-heavy metal. That’s why we’re more focusing on the TADF materials than the phosphorescent emitters. The synthetic process of traditional TADF is difficult because it emit light by intramolecular charge transfer. Recently, scientist developed a new way to emit the light with exciplex, which is made by mixing electron donor and acceptor. This synthetic process is more simple than traditional one since the electron donor and acceptor can be designed and synthesized separately. On the other hand, the exciplex contain small energy gap between the singlet state and the triplet state, so it also shows the phenomenon of Thermal Activated Delayed Fluorescence.
The main purpose of this thesis are designing and synthesizing a series of electron transporting materials with good injection ability. We chose the appropriate electron donor to produce the exciplex and serve as emitting layer and host materials. We probed the device efficiency between the molecular structure and molecular character via photo-physical analysis and application of device. In the first and second chapter, we synthesized a series of star shape electron transporting materials. These materials are comprised of pyrimidine and pyridine as the building block respectively, and combined different electron-withdrawing groups such as pyrimidine, pyridine, benzonitrile, pyrazole and the phosphine oxide at meta-position to break their π conjugation. By introducing the electron-withdrawing groups, these materials displayed excellent electron injection and transporting capability.
In the third chapter, we kept the pyrimidine as core and introduced benzene and pyridine at the 2 position, and also change the shape from star to linear. We expect that raised the horizontal dipole would lead to increase light out-coupling of device, thus enhancing the efficiency of device.
In the last chapter, we selected the 2,4,6-triphenyl-1,3,5-triazine as core structure and then introduced different electron-withdrawing groups at meta-meta position on one of the benzene. In the first section, we compared the different properties between introducting of chloride and cyano. In the second section, we introduced different electron-withdrawing groups to improve the electron-transporting mobility. For these four chapters we selected appropriate hole-transporting materials to arrange in pairs with the electron-transporting materials. We discussed the performance of forming exciplex, then applied it on emitting layer and host materials.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:58:11Z (GMT). No. of bitstreams: 1
ntu-108-R06223156-1.pdf: 32684086 bytes, checksum: b25c3237eebc815bf16b3f5d9e2fcd22 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
Abstract iii
分子結構及效率索引 v
目錄 xvi
圖目錄 xxi
表目錄 xxxiii
第一章 有機發光二極體 1
1-1前言 1
1-2 有機電致發光元件基本原理 3
1-3 電致發光反應機構及原理 5
1-4 熱激活化延遲螢光 (Thermally Activated Delayed Fluorescence, TADF) 9
1-5 激發錯合物應用及原理 (exciplex) 12
1-6 主客發光系統與能量轉移機制 16
1-7 參考文獻 19
第二章 以嘧啶為核心之星狀電子傳輸材料 (Electron Transporting Materials) 之設計合成、性質與元件表現 21
2-1 前言 21
2-2 含嘧啶結構材料之文獻探討 22
2-3 含嘧啶之電子傳輸材料分子設計與合成 29
2-3-1 材料2N-T2P、3N-T2P及4N-T2P之分子設計與合成 29
2-3-1-1材料2N-T2P、3N-T2P及4N-T2P之分子合成 29
2-3-2 材料CN-T2P之分子設計與合成 31
2-3-3 材料2py-T2P及3P-T2P之分子設計與合成 33
2-3-4 材料PO-T2P之分子設計與合成 36
2-4 理論計算 38
2-4-1分子2N-T2P、3N-T2P及4N-T2P之理論計算 38
2-4-2分子CN-T2P之理論計算 39
2-4-3分子2Py-T2P和3P-T2P之理論計算 39
2-4-4分子PO-T2P之理論計算 40
2-5 性質研究 41
2-5-1 熱性質 41
2-5-2 電化學性質 42
2-5-3 溶液態光與混摻薄膜物理性質 49
2-5-3-1溶液態光物理性質 49
2-6 有機發光二極體元件應用 59
2-6-1 2Py-T2P、3P-T2P有機發光二極體元件應用 59
2-7 結論 70
2-8 參考文獻 71
第三章 以吡啶為核心之星狀電子傳輸材料 (Electron Eransporting Materials) 之設計合成、性質與元件表現 72
3-1 前言 72
3-2 含吡啶結構材料之文獻探討 (含吡啶 (pyridine) 之光電材料) 73
3-3 含吡啶之電子傳輸材料分子設計與合成 77
3-3-1 材料2N-Pyr、3N-Pyr及4N-Pyr之分子設計與合成 77
3-3-1-1材料2N-Pyr、3N-Pyr及4N-Pyr之分子合成 77
3-3-2 材料CN-Pyr之分子設計與合成 79
3-3-3 材料2py-Pyr和3P-Pyr之分子設計與合成 81
3-3-4 材料PO-Pyr之分子設計與合成 83
3-4 理論計算 85
3-4-1分子2N-Pyr、3N-Pyr及4N-Pyr之理論計算 85
3-4-2分子CN-Pyr之理論計算 86
3-4-3分子2Py-Pyr和3P-Pyr之理論計算 87
3-4-4分子PO-Pyr之理論計算 87
3-5 性質研究 89
3-5-1 熱性質 89
3-5-2 電化學性質 90
3-5-2-1分子2N-Pyr、3N-Pyr及4N-Pyr之電化學分析 90
3-5-2-2分子CN-Pyr之電化學分析 92
3-5-2-4分子PO-Pyr之電化學分析 93
3-5-3 溶液態光與混摻薄膜物理性質 96
3-5-3-1溶液態光物理性質 96
3-5-3-2固態薄膜光物理性質 99
3-6 有機發光二極體元件應用 114
3-6-1 2N-Pyr及CN-Pyr之有機發光二極體元件應用 114
3-6-2 2Py-Pyr、3P-Pyr之有機發光二極體元件應用 117
3-7 結論 122
3-8 參考文獻 123
第四章 以嘧啶為核心之線型電子傳輸材料 (Electron Transporting Materials) 之設計合成、性質與元件表現 124
4-1 前言 124
4-2 線型結構之文獻探討 125
4-3 含嘧啶之線型電子傳輸材料分子設計與合成 134
4-3-1材料CN-PymPyh、CN-PymPyr之分子設計與合成 134
4-3-2 材料2P-PymPyr、2P-PymPh之分子設計與合成 137
4-3-3 材料PO-PymPyr之分子設計與合成 139
4-4 理論計算 141
4-4-1分子CN-PymPyr及CN-PymPh之理論計算 141
4-4-2分子2P-PymPyr、2P-PymPh之理論計算 142
4-4-3分子PO-PymPyr之理論計算 142
4-5 性質研究 143
4-5-1 熱性質 143
4-5-2 電化學性質 145
4-5-3 溶液態、固態與混摻薄膜光物理性質 148
4-6 有機發光二極體元件應用 162
4-7 結論 175
4-8 參考文獻 176
第五章 以1,3,5-三嗪 (1,3,5-triazine)為核心之電子傳輸材料 (Electron Transporting Materials) 之設計合成、性質與元件表現 177
5-1 前言 177
5-2 以1,3,5-三嗪 (1,3,5-triazine) 為核心結構之文獻探討 178
5-3 含嘧啶之電子傳輸材料分子設計與合成 186
5-3-1 材料3,5-Cl-T1T、3,5-CN-T1T、3,4-Cl-T1T、3,4-CN-T1T之分子設計與合成 186
5-3-1-1分子3,5-Cl-T1T、3,5-CN-T1T之合成 186
5-3-1-2分子3,4-Cl-T1T、3,4-CN-T1T之合成 187
5-3-2 材料3,5-pymi、3,5-2Py、3,5-3Py、3,5-bCN及3,5-dP之分子設計與合成 190
5-4 理論計算 192
分子3,4-Cl-T1T及3,5-Cl-T1T之理論計算 192
分子3,4-CN-T1T及3,5-CN-T1T之理論計算 193
分子3,5-dP、3,5-2Py、3,5-3Py、3,5Pymi及3,5-bCN之理論計算 194
5-5 性質研究 196
5-5-1 熱性質 196
5-5-2 電化學性質 197
5-5-3 溶液態與混摻薄膜物理性質 200
5-6 有機發光二極體元件應用 215
5-6-1 3,5-Cl-T1T、3,4-Cl-T1T有機發光二極體元件應用 215
5-6-2 3,5-Pymi、3,5-2Py、3,5-3Py、3,5-bCN、3,5-bP有機發光二極體元件應用 227
5-7 結論 235
5-8 參考文獻 236
第六章 實驗部分 237
6-1 實驗使用儀器 237
6-1-1 1H NMR、13C NMR 核磁共振光譜 (nuclear mangetic resonance spectroscopy, NMR) 237
6-1-2 質譜儀 (mass spectroscopy) 237
6-1-3 熱重分析 (thermal analysis) 237
6-1-4 紫外光/可見光吸收光譜 237
6-1-5 螢光光譜 (fluorescence) 238
6-1-6 其他 238
6-2 實驗數據及步驟 239
附錄 化合物之1H、13C NMR光譜 277
-
dc.language.isozh_TW-
dc.subject?啶zh_TW
dc.subject嘧啶zh_TW
dc.subject有機發光二極體zh_TW
dc.subject電子傳輸層zh_TW
dc.subject三?zh_TW
dc.subject激發錯合物zh_TW
dc.subjectpyridineen
dc.subjectexciplexen
dc.subjectpyrimidineen
dc.subjectOLEDen
dc.subjectETLen
dc.subjecttriazineen
dc.title以嘧啶、吡啶及三嗪為主體之電子傳輸層材料設計、合成與元件應用zh_TW
dc.titleDesign,synthesis and application of pyrimidine,pyridine and triazine-based electron transporting materialsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪文誼;梁文傑zh_TW
dc.contributor.oralexamcommitteeWen-Yi Hung;Man-Kit Leungen
dc.subject.keyword嘧啶,?啶,三?,電子傳輸層,有機發光二極體,激發錯合物,zh_TW
dc.subject.keywordpyrimidine,pyridine,triazine,ETL,OLED,exciplex,en
dc.relation.page316-
dc.identifier.doi10.6342/NTU201901491-
dc.rights.note未授權-
dc.date.accepted2019-07-22-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
31.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved