請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77350完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高振宏 | zh_TW |
| dc.contributor.author | 楊清雲 | zh_TW |
| dc.contributor.author | Ching-Yun Yang | en |
| dc.date.accessioned | 2021-07-10T21:57:39Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2019-08-13 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] K. N. Tu, Microelectronics Reliability 51, 517-523 (2011)
[2] K. N. Tu, H. Y. Hsiao, C. Chen, Microelectronics Reliability 53, 2-6 (2013) [3] K. N. Tu, Y. Liu, Materials Science and Engineering: R: Reports, 136, 1-12 (2019) [4] J. Asen Long Xin, M. Lai Chih, G. Jeff Chen Yi, H. Tan Kim, in Electronic Packaging Technology (2006) [5] K. Wei, B. Lin, J. Tai, in Electronic Packaging Technology and High Density Packaging (2011) [6] Hugo Pristauz, Alastair Attard, Andreas Mayr, Chip Scale Review, 21, 29-33 (2017) [7] Y. Wang, K. H. Lu, J. lm, P. S. Ho, in Electronic Components and Technology Conference (2010) [8] K. Y. Au, F. X. Che, J. L. Aw, J. K. Lin, B. Boehme, F. Kuechenmeister, in Electronics Packaging Technology Conference (2014) [9] J. Gambino, J. Wynne, J. Gill, S. Mongeon, D. Meatyard, B. Lee, H. Bamnolker, L. Hall, N. Li, M. Hernandez, P. Little, M. Hamed, I. Iavanov, C. L. Gan, Microelectronic Engineering 83, 2059-2067 (2006) [10] T. Osborn, A. He, N. Galiba, P. A. Kohl, Journal of The Electrochemical Society 155, D 308 (2008) [11] A. He, T. Osborn, S. A. Bidstrup Allen, P. A. Kohl, Electrochemical and Solid-State Letters 9, C192 (2006) [12] H. C. Koo, R. Saha, P. A. Kohl, Journal of The Electrochemical Society 158, D698 (2011) [13] H. C. Koo, R. Saha, P. A. Khol, Journal of The Electrochemical Society 159, D319 (2012) [14] T. Osborn, N. Galiba, P. A. Kohl, Journal of The Electrochemical Society 156, D226 (2009) [15] H. T. Hung, S. Yang, Y. B. Chen, C. R. Kao, Journal of Electronic Materials 46, 4321-4325 (2017) [16] S. Yang, H. T. Hung, P. Y. Wu, Y. W. Wang, H. Nishikawa, and C. R. Kao, Journal of The Electrochemical Society 165, D273-D281 (2018) [17] A. Laor, D. Athia, A. Rezvani, H. Clauberg, and M. Mayer, Microelectronics Reliability, 73, 60 (2017) [18] X. R. Zhang, W. H. Zhu, B. P. Liew, M. Gaurav, A. Yeo, K. C. Chan, in Thermal Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (2010) [19] S. Lee, Y. X. Guo, C. K. Ong, in Electronic Packaging Technology Conference (2005) [20] V. Fiori, Z. Xueren, T. Tong Yan, in Electronic Components and Technology Conference (2006) [21] X. Yin, L. Hong, B.-H. Chen, T.-M. Ko, Journal of Colloid and Interface Science 262, 89-96 (2003) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77350 | - |
| dc.description.abstract | 三維積體電路堆疊透過垂直堆疊多層的積體電路使得摩爾定律得以延伸,以滿足現代對於電子產品高效能、多功能、低功率消耗以及較小體積的要求。然而,傳統上用於垂直堆疊的銲錫凸塊在晶片微縮的趨勢下會面臨一些物理上的挑戰,例如最小線寬的限制以及對抗電遷移效應的可靠性議題等。電鍍銅凸塊在上述所提的兩點議題上相較於傳統銲錫凸塊擁有較好的表現。因此電鍍銅凸塊有應用在微小線寬的潛力。然而,電鍍銅凸塊的常見接合方式為熱壓接合,是一種需要在高溫施加壓力的接合方式,施加高溫以及壓力會產生一些可靠性議題,像是熱應力、機械應力以及介面的剝落等。
在本研究中,我們致力開發了一新穎的接合技術能在低溫與無施加壓力的條件下進行接合,此接合技術整合了無電鍍技術與微流體技術。在此技術中,晶片被放置於以PDMS為材質的微流道中,底部以玻璃片作為支撐,微流道透過矽膠管與定量幫浦連接,形成一個微流體系統。定量幫浦使我們能夠準確的控制通過微流道內的無電鍍液之流動。 此技術擁有低操作溫度、無須施加壓力等優點,可潛在性地增加電子產品的可靠性。進一步的研究顯示操作溫度以及流速對於無電鍍的結果有影響。此外,微流體無電鍍製程在適當的上鍍參數之下,能夠接合晶片之間的銅柱。我們對成功完成接合的晶片以掃描式電子顯微鏡觀察以無電鍍結合的銅柱。我們將結合的銅柱截面使用聚焦離子束進行觀察。 | zh_TW |
| dc.description.abstract | 3D ICs enables the extension of Moore’s law by vertical stacking of multiple layers of integrated circuits to meet electronic device requirements such as higher performance, increased functionality, lower power consumption, and smaller footprint. However, conventional solder bump is faced with challenges such as pitch limit and electromigration reliability as the chip dimensions are scaled down. Cu pillar bump provides advantages over conventional solder bump in terms of above-mentioned concerns. Thus, Cu pillar bump is a candidate for fine pitch applications. Nevertheless, common boding methods of Cu pillar bump requires high operating temperature and bonding pressure. And, both of which may cause reliability concerns such as thermal stress, mechanical stress, and interfacial delamination.
In this study, we developed an innovative bonding process that requires low temperature and pressureless bonding conditions. The bonding technique incorporates electroless plating process and microfluidic system. Chips were placed between a glass plate and a PDMS microchannel. And, silicone tubes were used to connect the PDMS microchannel and a syringe pump, forming a microfluidic system. The syringe pump allows us to precisely control the flow of electroless bath through the microchannel. This bonding process has the advantages of low operating temperature and pressureless condition, which can potentially improve the reliability of electronic packaging. The investigation shows that both operating temperature and flow condition have important influence on the plating results. Furthermore, the microfluidic electroless process is able to bond Cu pillars between chips with proper plating parameters. The bonded chips were analyzed by Scanning Electron Microscope (SEM) and Optical Microscope (OM). Finally, focused in beam (FIB) was used to observe the cross-sectional image of bonded Cu pillars. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:57:39Z (GMT). No. of bitstreams: 1 ntu-108-R06527004-1.pdf: 4060676 bytes, checksum: c9e77f0e61fcfacf94ba31b5dae217df (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 3D IC integration 1 1.2 Cu pillar bump 4 1.3 Thermocompression bonding 7 1.4 Electroless plating for Cu-Cu bonding 10 Chapter 2 Literature Reviews 13 2.1 All-copper chip-to-substrate interconnections by electroless Cu plating 13 2.2 Chip-to-chip interconnections by controlled flow electroless Ni plating 18 Chapter 3 Research Objectives 26 3.1 Effect of temperature and flow rate on electroless Ni plating 26 3.2 High-uniformity Cu-to-Cu interconnections by controlled flow 27 Chapter 4 Experiment 28 4.1 Test vehicle fabrication 28 4.2 Fabrication of PDMS microchannel 31 4.3 Electroless Ni(P) plating 33 Chapter 5 Results and Discussion 39 5.1 Effect of temperature on continuous flow electroless Ni(P) plating 39 5.2 Effect of flow rate on continuous flow electroless Ni(P) plating 43 5.3 Effect of continuous flow on electroless Ni(P) plating 47 5.4 Improvement of electroless Ni(P) plating using intermittent flow 52 5.5 Effect of stagnation time on intermittent flow electroless Ni(P) plating 55 5.6 Effect of reverse flow on intermittent flow electroless Ni(P) plating 59 Chapter 6 Conclusions 65 Chapter 7 References 66 | - |
| dc.language.iso | en | - |
| dc.subject | 晶片-晶片直接接合 | zh_TW |
| dc.subject | 微流體無電鍍製程 | zh_TW |
| dc.subject | 無壓力接合 | zh_TW |
| dc.subject | 低溫接合 | zh_TW |
| dc.subject | 銅-銅接合 | zh_TW |
| dc.subject | Microfluidic electroless process | en |
| dc.subject | Chip-to-chip direct bonding | en |
| dc.subject | Cu-to-Cu bonding | en |
| dc.subject | Low temperature bonding | en |
| dc.subject | Pressureless bonding | en |
| dc.title | 無電鍍鎳對於晶片直接接合的應用 | zh_TW |
| dc.title | Application of Electroless Ni Plating for Chip-to-chip Direct Bonding | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳子嘉;何政恩;陳志銘;林士剛 | zh_TW |
| dc.contributor.oralexamcommittee | ;;; | en |
| dc.subject.keyword | 微流體無電鍍製程,晶片-晶片直接接合,銅-銅接合,低溫接合,無壓力接合, | zh_TW |
| dc.subject.keyword | Microfluidic electroless process,Chip-to-chip direct bonding,Cu-to-Cu bonding,Low temperature bonding,Pressureless bonding, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU201901918 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
