Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77342
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑zh_TW
dc.contributor.advisorYi-You Huangen
dc.contributor.author葉智能zh_TW
dc.contributor.authorJhy-Neng Tasso Yehen
dc.date.accessioned2021-07-10T21:57:17Z-
dc.date.available2024-07-31-
dc.date.copyright2019-08-05-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O. M. Mueller, “The NMR phased array,” Magn. Reson. Med., vol. 16, no. 2, pp. 192–225, 1990.
[2] D. K. Sodickson and W. J.Manning, “Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays,”Magn. Reson. Med., vol. 38, no. 4, pp. 591–603, 1997.
[3] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magn. Reson. Med., vol. 42, no. 5, pp. 952–962, 1999.
[4] J. A. de Zwart, P. J. Ledden, P. Kellman, P. van Gelderen, and J. H. Duyn, “Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging,” Magn. Reson. Med., vol. 47, no. 6, pp. 1218–1227, 2002.
[5] B. Keil et al., “Size-optimized 32-channel brain arrays for 3 T pediatric imaging,” Magn. Reson. Med., vol. 66, no. 6, pp. 1777–1787, 2011.
[6] J. A. Nordmeyer-Massner, N. De Zanche, and K. P. Pruessmann, “Stretchable coil arrays: Application to knee imaging under varying flexion angles,” Magn. Reson. Med., vol. 67, no. 3, pp. 872–879, 2012.
[7] R. Kriegl et al., “Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators,” Magn. Reson. Med., vol. 73, no. 4, pp. 1669–1681, 2015.
[8] I. Hancu, E. Fiveland, K. Park, R. O. Giaquinto, K. Rohling, and F. Wiesinger, “Flexible, 31-channel breast coil for enhanced parallel imaging performance at 3 T,” Magn. Reson. Med., vol. 75, no. 2, pp. 897–905, 2016.
[9] J. R. Corea et al., “Screen-printed flexible MRI receive coils,” Nature Commun., vol. 7, p. 10839, Mar. 2016.
[10] J.-N. T. Yeh and F. H. Lin, “Decoupling between coils in a flexible phased-array using stacked circumferential shielding,” in Proc. 24th Annu. Meeting (ISMRM), Singapore, 2016, p. 3522.
[11] J.-N. T. Yeh and F. H. Lin, “Magnetic resonance imaging receiver coil decoupling using circumferential shielding structures,” in Proc. IEEE Eng. Med. Biol. Soc., Orlando, FL, USA, Aug. 2016, pp. 6254–6257.
[12] S. S. Vasanawala et al., “Development and clinical implementation of very light weight and highly flexible AIR Technology arrays,” in Proc. 25th Annu. Meeting (ISMRM), Honolulu, HI, USA, 2017, p. 755.
[13] R. F. Lee, R. O. Giaquinto, and C. J. Hardy, “Coupling and decoupling theory and its application to the MRI phased array,” Magn. Reson. Med., vol. 48, no. 1, pp. 203–213, Jul. 2002.
[14] B. Wu et al., “7 T human spine imaging arrays with adjustable inductive decoupling,” IEEE Trans. Biomed Eng., vol. 57, no. 2, pp. 397–403, Jun. 2010.
[15] A.-L. Perrier et al., “Design of a two-channel NMR coil using an impedance transformation approach,” IEEE Sensors J., vol. 12, no. 6, pp. 1801–1808, Jun. 2012.
[16] X. Yan, X. Zhang, B. Feng, C. Ma, L. Wei, and R. Xue, “7 T transmit/receive arrays using ICE decoupling for human head MR imaging,”IEEE Trans. Med. Imag., vol. 33, no. 9, pp. 1781–1787, Sep. 2014.
[17] M. Weiger, K. P. Pruessmann, C. Leussler, P. Röschmann, and P. Boesiger, “Specific coil design for SENSE: A six-element cardiac array,” Magn. Reson. Med., vol. 45, no. 3, pp. 495–504, Mar. 2001.
[18] B. Keil and L. L. Wald, “Massively parallel MRI detector arrays,”J. Magn. Reson., vol. 229, pp. 75–89, Apr. 2013.
[19] T. Lanz and M. Griswold, “Concentrically shielded surface coils—A new method for decoupling phased array elements,” in Proc. 14th Annu. Meeting (ISMRM), Seattle, WA, USA, 2006, p. 217.
[20] M. Burl and I. Young, “Surface receiver coils with asymmetric sensitivity on either side for MR imaging and spectroscopy,” in Proc. 2nd Annu. Meeting (ISMRM), New York, NY, USA, 1994, p. 1128.
[21] N. De Zanche, J. A. Massner, C. Leussler, and K. P. Pruessmann, “Modular design of receiver coil arrays,” NMR Biomed., vol. 21, no. 6, pp. 644–654, 2008.
[22] M. H. Deppe, J. Parra-Robles, H. Marshall, T. Lanz, and J. M. Wild, “A flexible 32-channel receive array combined with a homogeneous transmit coil for human lung imaging with hyperpolarized 3He at 1.5 T,”Magn. Reson. Med., vol. 66, no. 6, pp. 1788–1797, 2011.
[23] K. M. Gilbert, J. Belliveau, A. T. Curtis, J. S. Gati, L. M. Klassen, and R. S. Menon, “A conformal transceive array for 7 T neuroimaging,”Magn. Reson. Med., vol. 67, no. 5, pp. 1487–1496, 2012.
[24] B. Wu et al., “Flexible transceiver array for ultrahigh field human MR imaging,” Magn. Reson. Med., vol. 68, no. 4, pp. 1332–1338, Jan. 2012.
[25] A. Graessl et al., “Modular 32-channel transceiver coil array for cardiac MRI at 7.0 T,” Magn. Reson. Med., vol. 72, no. 1, pp. 276–290, 2014.
[26] J. Cui et al., “A switched-mode breast coil for 7 T MRI using forced-current excitation,” IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1777–1783, Jul. 2015.
[27] T. Zhang et al., “A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3 T,” Magn. Reson. Med., vol. 76, no. 3, pp. 1015–1021, 2016.
[28] X. Yan, J. C. Gore, and W. A. Grissom, “Self-decoupled RF coils,” in Proc. 25th Annu. Meeting (ISMRM), Honolulu, HI, USA, 2017, p. 757.
[29] D. I. Hoult, “The principle of reciprocity in signal strength calculations—A mathematical guide,” Concepts Magn. Reson., vol. 12, no. 4, pp. 173–187, 2000.
[30] C. M. Collins and M. B. Smith, “Calculations of B1 distribution, SNR, and SAR for a surface coil adjacent to an anatomically-accurate human body model,” Magn. Reson. Med., vol. 45, no. 4, pp. 692–699, 2001.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77342-
dc.description.abstract本論文旨在研究開發一具可靈活模組化的多通道磁振造影射頻接收線圈陣列,能靈活地由任意個獨立線圈模組來構成此一陣列,更能夠緊密地與各種受測物體貼合以得到最佳訊噪比。此設計立意係考量到在磁振造影的各種應用之中,常需要一具能適當符合受測物體大小以及外輪廓的接收線圈陣列,俾能更有效率地接收到受測體的磁振造影訊號。本論文中所提出的線圈陣列設計,係於每一獨立的線圈模組之內皆安置一立體堆疊環狀屏蔽結構:環繞於表面線圈周圍之屏蔽金屬箔片,而且只需要在各個線圈模組之間安排一微小間隙即可建構整個線圈陣列。因而能夠令整個線圈陣列緊貼於各種大小各式形狀的受測物體,同時亦能展現出強健的去除互耦效應的能力。
論文內容包括了全波段電磁模擬以及影像擷取實驗,並探討了兩種類型的環狀屏蔽結構。對於安置在各種不同曲率的假體表面上的模組化雙通道線圈陣列,電磁模擬與影像擷取實驗的結果皆顯示此一設計確實能夠良好地去除相鄰線圈模組之間的互耦效應:在電磁模擬的結果中,S21的數值皆落於-18.1 dB和-19.9 dB之間,而在影像擷取的實驗中,雜訊相關性矩陣的非對角線項目的平均值皆小於0.047。另外,我們在3T磁振造影系統上建構了一具七通道的原型,並用以擷取受測者的腦部、膝蓋和小腿的結構性影像。相較於標準商用三十二通道腦部接收線圈陣列和標準商用四通道可撓接收線圈陣列,此一原型於受測者表面深度50 mm內皆獲得較高的最大及平均訊噪比:分別能達到商用線圈陣列的2.63/1.35倍和3.89/1.50倍。綜合這些優點,可證明此一設計足以滿足各種臨床研究與應用。
zh_TW
dc.description.abstractWe propose a flexible form-fitting MRI receiver coil array assembled by individual coil modules. This design targets MRI applications requiring a receiver array conforming to the anatomy of various shapes or sizes. Coil modules in our proposed array were arranged with gaps between them. Each coil module had a circumferential shielding structure stacked on top of the coil. Together they achieve robust decoupling when the array was bent differently.
Two types of the circumferential shielding structure were investigated by using full-wave electromagnetic simulations and imaging experiments. Results showed that our flexible coil array had good decoupling between coils whether they were on a flat or curved surface with the S21 magnitude ranged between -18.1 dB and -19.9 dB in simulations, and with the average of off-diagonal entries of the noise correlation matrix less than 0.047 in experimental measurements. Anatomical images of human brain, calf, and knee were acquired by our seven-channel prototype on a 3T MRI system. The maximal and the average SNR within 50 mm from our array surpassed those from the commercial 32-channel head and 4-channel flexible coil arrays by 2.63/1.35-fold and 3.89/1.50-fold, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:57:17Z (GMT). No. of bitstreams: 1
ntu-108-D01548020-1.pdf: 6507346 bytes, checksum: 18e0d610030a37f3d3bb7eee626e9cf5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
Abstract ............................................................................................................................ iii
Contents ........................................................................................................................... iv
List of Figures ................................................................................................................... v
Chapter I — Introduction .................................................................................................. 1
Chapter II — Methods ...................................................................................................... 4
Full-Wave Electromagnetic Modeling ...................................................................... 4
Design of Coil Module ............................................................................................. 7
Bench and Experimental Measurements................................................................... 9
Chapter III — Results ..................................................................................................... 13
Numerical Simulations ........................................................................................... 13
Imaging Measurements ........................................................................................... 17
Human Imaging ...................................................................................................... 24
Chapter IV — Discussion ............................................................................................... 28
Chapter V — Conclusion ............................................................................................... 33
References....................................................................................................................... 34
-
dc.language.isoen-
dc.subject環狀屏蔽zh_TW
dc.subject線圈陣列zh_TW
dc.subject互耦效應zh_TW
dc.subject磁振造影zh_TW
dc.subject可靈活模組化zh_TW
dc.subjectcoil arrayen
dc.subjectcircumferential shieldingen
dc.subjectflexible and modularen
dc.subjectmagnetic resonance imaging (MRI)en
dc.subjectmutual couplingen
dc.title應用於磁振造影的可靈活模組化射頻接收線圈陣列zh_TW
dc.titleA Flexible and Modular Receiver Coil Array for Magnetic Resonance Imagingen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林發暄;黃騰毅;蔡尚岳;莊子肇;鍾孝文zh_TW
dc.contributor.oralexamcommitteeFa-Hsuan Lin;;;;en
dc.subject.keyword環狀屏蔽,線圈陣列,可靈活模組化,磁振造影,互耦效應,zh_TW
dc.subject.keywordcircumferential shielding,coil array,flexible and modular,magnetic resonance imaging (MRI),mutual coupling,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU201902106-
dc.rights.note未授權-
dc.date.accepted2019-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
6.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved