請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姚宗珍(Chung-Chen Jane Yao) | |
| dc.contributor.author | Yuan-Heng Yu | en |
| dc.contributor.author | 游元亨 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:56:49Z | - |
| dc.date.available | 2021-07-10T21:56:49Z | - |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-02 | |
| dc.identifier.citation | Abdelmagid, S. M., Barbe, M. F., & Safadi, F. F. (2014). Role of inflammation in the aging bones. Life Sciences.
Alhashimi, N., Frithiof, L., Brudvik, P., & Bakhiet, M. (1999). Chemokines are upregulated during orthodontic tooth movement. J Interferon Cytokine Res, 19(9), 1047-1052. Alikhani, M., Alyami, B., Lee, I. S., Almoammar, S., Vongthongleur, T., Alikhani, M., . . . Teixeira, C. C. (2015). Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod Craniofac Res, 18 Suppl 1, 8-17. Alikhani, M., Sangsuwon, C., Alansari, S., Nervina, J. M., & Teixeira, C. C. (2018). Biphasic theory: breakthrough understanding of tooth movement. Journal of the World Federation of Orthodontists, 7(3), 82-88. Armeli, E., Moas, M., Reznick, A. Z. and Coleman, R. (2004). Matrix metalloproteinases and skeletal muscle: A brief review. Muscle Nerve, 29(2), 191-197. Barbro Dahlen, J. S., Peter Howarth. (1999). Immunohistochemical localisation of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma. Throax, 54, 590-586. Basdra, E. K., Papavassiliou, A. G., & Huber, L. A. (1995). Rab and rho GTPases are involved in specific response of periodontal ligament fibroblasts to mechanical stretching. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1268(2), 209-213. Bletsa, A., Berggreen, E., & Brudvik, P. (2006). Interleukin-1alpha and tumor necrosis factor-alpha expression during the early phases of orthodontic tooth movement in rats. Eur J Oral Sci, 114(5), 423-429. Bonucci, E. (2007). Main Suggested Calcification Mechanisms: Extracellular Matrix. Biological Calcification: Normal and Pathological Processes in the Early Stages, 507-559. Boyce, B. F., & Xing, L. (2008). Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry and Biophysics, 473(2), 139-146. Brenneisen, P., Wlaschek, M., Schwamborn, E., Schneider, L. A., Ma, W., Sies, H., & Scharffetter-Kochanek, K. (2002). Activation of protein kinase CK2 is an early step in the ultraviolet B-mediated increase in interstitial collagenase (matrix metalloproteinase-1; MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts. Biochem J, 365(Pt 1), 31-40. Brooks, P. J., Nilforoushan, D., Manolson, M. F., Simmons, C. A., & Gong, S. G. (2009). Molecular markers of early orthodontic tooth movement. Angle Orthod, 79(6), 1108-1113. Cabrera, M. d. C., Cabrera, C. A. G., Freitas, K. M. S. d., Freitas, M. R. d., Janson, G., & Cabrera, L. d. C. (2012). Cephalometric effects of the use of 10-hour Force Theory for Class II treatment. Dental Press Journal of Orthodontics, 17, 31-40. Capelli Junior, J., Kantarci, A., Haffajee, A., Teles, R. P., Fidel, R., & Figueredo, C. M. (2011). Matrix metalloproteinases and chemokines in the gingival crevicular fluid during orthodontic tooth movement (Vol. 33). Chang, H. H., Wu, C. B., Chen, Y. J., Weng, C. Y., Wong, W. P., Chen, Y. J. Yao, C. C. (2008). MMP-3 response to compressive forces in vitro and in vivo. J Dent Res, 87(7), 692-696. Chen, C.-H., Lin, K.-C., Yu, D. T. Y., Yang, C., Huang, F., Chen, H.-A., Chou, C.-T. (2006). Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity. Rheumatology, 45(4), 414-420. Christine Gilles, D. F. N., Hiroshi Sato and Erik W. Thompson. (2005). Matrix Metalloproteases and Epitheial-to-Mesenchymal Transition. Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition, 298-315. Fleenor, D. L., Pang, I.-H., & Clark, A. F. (2003). Involvement of AP-1 in Interleukin-1α–Stimulated MMP-3 Expression in Human Trabecular Meshwork Cells. Investigative Opthalmology & Visual Science, 44(8). Georgios Trichas, J. B. a. S. S. (2008). Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biology, 6(40), 1-13. Hashimoto, G., Inoki, I., Fujii, Y., Aoki, T., Ikeda, E., & Okada, Y. (2002). Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem, 277(39), 36288-36295. He, Y., Macarak, E. J., Korostoff, J. M., & Howard, P. S. (2009). Compression and Tension: Differential Effects on Matrix Accumulation by Periodontal Ligament Fibroblasts In Vitro. Connective Tissue Research, 45(1), 28-39. John, A., & Tuszynski, G. (2001). The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res, 7(1), 14-23. Kumasako-Haga, T., Konoo, T., Yamaguchi, K., & Hayashi, H. (2009). Effect of 8-hour intermittent orthodontic force on osteoclasts and root resorption. American Journal of Orthodontics and Dentofacial Orthopedics, 135(3), 278.e271-278.e278. Lynch, C. C. (2011). Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone, 48(1), 44-53. Meikle, M. C. (2006). The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod, 28(3), 221-240. Mekada, K., Abe, K., Murakami, A., Nakamura, S., Nakata, H., Moriwaki, K., . . . Yoshiki, A. (2009). Genetic Differences among C57BL/6 Substrains. Experimental Animals, 58(2), 141-149. Mitsui, N., Suzuki, N., Koyama, Y., Yanagisawa, M., Otsuka, K., Shimizu, N., & Maeno, M. (2006). Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sciences, 79(6), 575-583. Miyagawa, A., Chiba, M., Hayashi, H., & Igarashi, K. (2009). Compressive force induces VEGF production in periodontal tissues. J Dent Res, 88(8), 752-756. Oppenheim, A. (2007). Tissue changes, particularly of the bone, incident to tooth movement. The European Journal of Orthodontics, 29(Supplement 1), i2-i15. Pinkert, C. A. (2002). Transgenic Animal technology: A Laboratory Handbook. Ribbens, C., Andre, B., Kaye, O., Kaiser, M. J., Bonnet, V., Jaspar, J. M., Malaise, M. G. (2000). Synovial fluid matrix metalloproteinase‐3 levels are increased in inflammatory arthritides whether erosive or not. Rheumatology, 39(12), 1357-1365. Sakai, Y., & Subramani, S. (1997). Green fluorescent protein (GFP) fluorescence through the Rhodamine channel after excitation using the FITC filter set. Technical Tips Online, 2(1), 188-189. Schoppet, M. (2002). RANK Ligand and Osteoprotegerin: Paracrine Regulators of Bone Metabolism and Vascular Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(4), 549-553. Sorsa, T., Tjäderhane, L. and Salo, T. . (2004). Matrix metalloproteinases (MMPs) in oral diseases. Oral Diseases, 10(6), 311-318. Suzuki, R., Nemoto, E., & Shimauchi, H. (2014). Cyclic tensile force up-regulates BMP-2 expression through MAP kinase and COX-2/PGE2 signaling pathways in human periodontal ligament cells. Exp Cell Res, 323(1), 232-241. Tanaka, S., Hamanishi, C., Kikuchi, H., & Fukuda, K. (1998). Factors related to degradation of articular cartilagein osteoarthritis: a review. Seminars in Arthritis and Rheumatism, 27(6), 392-399. Tsien, R. Y. (1998). The green fluorescent protein. Annu Rev Biochem, 67, 509-544. Ueda, M., Kuroishi, K. N., Gunjigake, K. K., Ikeda, E., & Kawamoto, T. (2016). Expression of SOST/sclerostin in compressed periodontal ligament cells. Journal of Dental Sciences, 11(3), 272-278. Vergara, G. J., Irwin, M. H., Moffatt, R. J., & Pinkert, C. A. (1997). In vitro fertilization in mice: Strain differences in response to superovulation protocols and effect of cumulus cell removal. Theriogenology, 47(6), 1245-1252. Zeng, M., Kou, X., Yang, R., Liu, D., Wang, X., Song, Y., Zhou, Y. (2015). Orthodontic Force Induces Systemic Inflammatory Monocyte Responses. J Dent Res, 94(9), 1295-1302. Zhang, X., Schuppan, D., Becker, J., Reichart, P., & Gelderblom, H. R. (1993). Distribution of undulin, tenascin, and fibronectin in the human periodontal ligament and cementum: comparative immunoelectron microscopy with ultra-thin cryosections. J Histochem Cytochem, 41(2), 245-251. Zhao, J., Ouyang, Q., Hu, Z., Huang, Q., Wu, J., Wang, R., & Yang, M. (2016). A protocol for the culture and isolation of murine synovial fibroblasts. Biomedical Reports, 5(2), 171-175. Zurita, E., Chagoyen, M., Cantero, M., Alonso, R., Gonzalez-Neira, A., Lopez-Jimenez, A., Montoliu, L. (2011). Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res, 20(3), 481-489. 熊正文, 黃勇, 李春光. (2004). 骨組織脫鈣技術及在免疫組化染色中的應用. Chemical Journal of Comparative Medicine, 14(3), 175-178. 聶鑫, 杜炎昌, 趙崇福. (1984). 五種脫鈣易對牙齒及牙周組織脫鈣效果之評估. Chinese Dental Journal, 3(2), 29-33. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77332 | - |
| dc.description.abstract | 先前的研究指出矯正力會增加牙周組織基質金屬蛋白酶MMP-3的表現,然而MMP-3的產生對應矯正施力時間的關係尚不清楚。本實驗使用MMP-33-GFP基因轉殖小鼠及MMP-3-Luciferase-GFP基因轉殖大鼠,以綠螢光蛋白(GFP)作為報導基因,利用觀察切片的綠螢光,來標定MMP-3在矯正施力、及力量移除後表現的時間與空間。本實驗也用免疫組織染色及免疫螢光染色觀察牙周組織 MMP-3、GFP、Luciferase以及CD68的分佈。另外也觀察由轉殖基因大鼠分離的關節腔滑液纖維母細胞受刺激後產生的綠螢光來驗證大鼠GFP的光學性質。本研究發現綠螢光蛋白訊號在牙齒施力後12小時開始出現、一天之後訊號明顯,移除矯正力後三小時還可見綠螢光表現、但八小時後就回到未施力狀態。免疫染色的結果也顯示顯示類似的結果。本實驗以動物模型證明牙齒在受到間歇性矯正力時,牙周組織確實有時間性的訊息傳遞活化及消退。 | zh_TW |
| dc.description.abstract | Matrix metalloproteinase-3 has been reported to be involved in orthodontic tooth movements. But the time frame of the expression of MMP-3 and orthodontic force has not been elucidated. By observing the green flourscent protein (GFP) reporter expression in MMP3-GFP transgenic mice and MMP3- Luciferase-GFP transgenic rats, we can study the temporal and spatial expression of MMP-3 during and after the removal of orthodontic force. The immunohistochemical and immunoflourscent data addressed the distribution of MMP-3, GFP, Luciferase and CD68 around periodontal tissue. The optical property of GFP was detected on synovial fibroblast isolated from the transgenic rat. This research shows that the reporter GFP appears after 12 hours of orthodontic force, and becomes obvious after 1 day. Upon removal of force, the fluorescence signal remained 3 hours after removal of orthodontic force. Nevertheless, it dropped back to baseline after 8 hours. The results of IHC and IF also confirmed this notion. In this study, we demonstrate the time frame of molecular signal activation and quiescence of MMP-3 around periodontal tissue in rodent models using interrupted orthodontic forces. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:56:49Z (GMT). No. of bitstreams: 1 ntu-108-R05422012-1.pdf: 16998067 bytes, checksum: b524eb1a0685e778956331430605a4bd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 ................................................................................................................................................................................... 1
目錄 ................................................................................................................................................................................... 2 圖表目錄 ......................................................................................................................................................................... 4 中文摘要 ......................................................................................................................................................................... 5 Abstract ........................................................................................................................................................................... 6 第一章 引言 ................................................................................................................................................................ 7 1.1 牙齒矯正的生物力學 ............................................................................................................................... 7 1.1.1 牙周組織的構造 ............................................................................................................................... 7 1.1.2 齒槽骨的生理調節 .......................................................................................................................... 7 1.2 矯正力對牙周組織的初期影響 ............................................................................................................ 8 1.2.1 Pressure Tension Theory ................................................................................................................... 8 1.2.2 Biphasic theory ...................................................................................................................................... 9 1.3 矯正力對牙周組織MMP-3 表現的影響 ........................................................................................... 9 1.3.1 基質金屬蛋白酶 (Matrix Metalloproteinase) ....................................................................... 10 1.3.2 基質金屬蛋白酶和關節炎的關係 ........................................................................................... 10 1.4 基因轉殖鼠 ............................................................................................................................................... 11 1.4.1 綠螢光蛋白 ( Green Fluorescent Protein, GFP ) ................................................................ 11 1.5 間歇性力量 ............................................................................................................................................... 12 第二章 實驗目的 .................................................................................................................................................... 14 第三章 研究方法 .................................................................................................................................................... 15 3.1 小鼠門齒撐寬實驗 ...................................................................................................................................... 15 3 3.2 大鼠門齒臼齒對拉實驗 ............................................................................................................................. 15 3.3 基因轉殖大/小鼠麻醉及犧牲方式 ........................................................................................................ 15 3.4 樹脂切片製作及觀察 ................................................................................................................................. 16 3.5 石蠟切片製作及免疫染色 ........................................................................................................................ 16 3.6 關節腔滑液纖維母細胞培養及染色 ..................................................................................................... 16 第四章 研究結果 .................................................................................................................................................... 18 4.1 小鼠門齒撐寬實驗結果 ........................................................................................................................ 18 4.1.1 觀察綠螢光蛋白的螢光訊號 ..................................................................................................... 18 4.2 以抗原抗體反應標定蛋白質分佈 ..................................................................................................... 18 4.2.1 免疫組織化學染色: ................................................................................................................... 19 4.2.2 免疫螢光染色: ............................................................................................................................. 19 4.1 大鼠門齒臼齒對拉實驗結果 ............................................................................................................... 20 4.1.1 以抗原抗體反應標定蛋白質分佈: ....................................................................................... 20 4.2 關節腔滑液纖維母細胞培養觀察 ..................................................................................................... 21 第五章 討論 .............................................................................................................................................................. 23 5.1 基因轉殖小鼠門齒撐寬螢光表現 ..................................................................................................... 23 5.1.1 矯正力跟MMP-3 的關係 ............................................................................................................ 23 5.1.2 使用共軛焦顯微鏡觀察基因轉殖小鼠綠螢光 ................................................................... 25 5.2 基因轉殖大鼠門齒臼齒對拉螢光表現 ........................................................................................... 27 5.3 不同報導基因之間免疫螢光染色訊號的比較 ............................................................................. 28 5.3.1 大鼠及小鼠MMP-3 與GFP 比較 ............................................................................................ 28 5.3.2 大鼠Luciferase 與GFP 比較 ..................................................................................................... 28 5.4 關節腔滑液細胞培養之綠螢光表現 ................................................................................................ 29 第六章 結論 .............................................................................................................................................................. 30 第七章 未來研究方向 ............................................................................................................................................. 31 附錄 ................................................................................................................................................................................. 32 參考文獻 ....................................................................................................................................................................... 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 矯正牙齒移動 | zh_TW |
| dc.subject | 基質金屬蛋白?-3 | zh_TW |
| dc.subject | MMP-3 | en |
| dc.subject | orthodontic tooth movement | en |
| dc.title | 藉由MMP-3-GFP 基因轉殖小鼠及MMP-3-Luc-GFP 大鼠探討
MMP-3 在矯正性牙齒移動的表現 | zh_TW |
| dc.title | MMP-3 Expression During Orthodontic Tooth Movement in
MMP-3-GFP Transgenic Mice and MMP-3-Luc-GFP Rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.subject.keyword | 基質金屬蛋白?-3,矯正牙齒移動, | zh_TW |
| dc.subject.keyword | MMP-3,orthodontic tooth movement, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU201902118 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R05422012-1.pdf 未授權公開取用 | 16.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
