請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77317
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐善慧 | zh_TW |
dc.contributor.advisor | Shan-Hui Hsu | en |
dc.contributor.author | 林秉毅 | zh_TW |
dc.contributor.author | Ping-Yi Lin | en |
dc.date.accessioned | 2021-07-10T21:55:38Z | - |
dc.date.available | 2024-08-08 | - |
dc.date.copyright | 2019-08-13 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Waltman, R. J.; Bargon, J. Canadian Journal of Chemistry 1986, 64(1), 76-95.
2. Heeger, A. J. Chemical Society Reviews 2010, 39(7), 2354-2371. 3. Facchetti, A. Chemistry of Materials 2010, 23(3), 733-758. 4. L. Feng; C. Zhu; H. Yuan; L. Liu; F. Lv; S. Wang Chem.Soc. Rev. 2013, 42, 6620 5. Ardo, S.; Meyer, G. J. Chemical Society Reviews 2009, 38(1), 115-164. 6. C. Wang; H. Dong; W. Hu; Y. Liu; D. Zhu Chem. Rev. 2011, 112(4), 2208–2267. 7. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Shirakawa, H. Journal of the American Chemical Society 1978, 100(3), 1013-1015. 8. Worsfold, D. J.; Bywater, S. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1960,38 9. Benoit, H.; Decker, D.; Duplessix, R.; Picot, C.; Rempp, P. Journal of Polymer Science: Polymer Physics Edition 1976, 14(12), 2119-2128. 10. Hamley, I. W. Journal of Physics-Condensed Matter 2001, 13, (33), R643-R671. 11. Lazzari, M.; Lopez-Quintela, M. Advanced Materials 2003, 15, (19), 1583-1594. 12. Fitt, J.J.; Gschwend, H. W. The Journal of Organic Chemistry 1984, 49(1), 209-210. 13. Neef, C. J.; Ferraris, J. P. Macromolecules 2000, 33(7), 2311-2314. 14. Zhang, X.; Lee, J. S.; Lee, G. S.; Cha, D. K.; Kim, M. J.; Yang, D. J.; Manohar, S. K. Macromolecules 2006, 39(2), 470-472. 15. Schlüter, A. D. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39(10), 1533-1556. 16. Ludwigs, Sabine, ed. P3HT Revisited-From Molecular Scale to Solar Cell Devices. Vol. 265. Berlin: springer, 2014. 17. Miyakoshi, R., Shimono, K., Yokoyama, A., & Yokozawa, T. Journal of the American Chemical Society 2006, 128(50), 16012-16013. 18. Palaniappan, S.; John, A. Progress in polymer science 2008, 33(7), 732-758. 19. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Advanced Materials 2000, 12(23), 1737-1750. 20. Huang, Y. C. et al. Journal of Materials Chemistry 2011, 21(12), 4450-4456. 21. Liu, J.; Li, J.; Tu, G. Frontiers of Optoelectronics 2018, 11(4), 348-359. 22. Jiao, H. F.; Wang, X.; Yao, K.; Chen, P.; Jia, Z.; Peng, Z.; Li, F. Journal of Materials Chemistry B 2016, 4(48), 7882-7887. 23. Kim, J.; Song, I. Y.; Park, T. Chemical Communications 2011, 47(16), 4697-4699. 24. Song, I. Y.; Kim, J.; Im, M. J.; Moon, B. J.; Park, T. Macromolecules 2012, 45(12), 5058-5068. 25. Chen, J. et al. Journal of Materials Chemistry 2012, 22(26), 13013-13022. 26. Li, J. H.; Li, Y.; Xu, J. T.; Luscombe, C. K. ACS applied materials & interfaces 2017, 9(21), 17942-17948. 27. Orilall, M. C.; Wiesner, U. Chemical Society Reviews 2011, 40(2), 520-535. 28. Tu, G.; Li, H.; Forster, M.; Heiderhoff, R.; Balk, L. J.; Sigel, R.; Scherf, U. Small 2007, 3(6), 1001-1006. 29. Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38(21), 8649-8656. 30. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Journal of the American Chemical Society 2005, 127(49), 17542-17547. 31. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D.Macromolecules 2001, 34(13), 4324-4333 32. McCullough, R. D. Advanced Materials 1998, 10(2), 93-116. 33. Chen, T. A.; Wu, X.; Rieke, R. D. Journal of the American Chemical Society 1995, 117(1), 233-244. 34. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough,R. D. Macromolecules 2001, 34(13), 4324-4333 35. Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2004, 37(4), 1169-1171. 36. Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T. Journal of the American Chemical Society 2006, 128(50), 16012-16013. 37. Stefan, M. C.; Javier, A. E.; Osaka, I.; McCullough, R. D. Macromolecules 2008, 42(1), 30-32. 38. Yokoyama, A.; Kato, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2008, 41(20), 7271-7273. 39. Park, C.; Yoon, J.; & Thomas, E. L. Polymer 2003, 44(22), 6725-6760. 40. Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R. Macromolecules 2007, 40(19), 6990-6997. 41. Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. Journal of the American chemical society 2007, 129(36), 11036-11038. 42. Shen, C. et al. Reactive and Functional Polymers 2016, 108, 94-102. 43. Lee, Y. H.; Chen, W. C.; Yang, Y. L.; Chiang, C. J.; Yokozawa, T.; Dai, C. A. Nanoscale 2014, 6(10), 5208-5216. 44. Ho, V., Boudouris; B. W.; Segalman, R. A. Macromolecules 2010, 43(19), 7895-7899. 45. Donley, C. L.; Zaumseil, J.; Andreasen, J. W.; Nielsen, M. M.; Sirringhaus, H.; Friend, R. H.; Kim, J. S. Journal of the American Chemical Society 2005, 127(37), 12890-12899. 46. Osaheni, J. A.; Jenekhe, S. A. Journal of the American Chemical Society 1995, 117(28), 7389-7398. 47. Gido, S. P.; Schwark, D. W.; Thomas, E. L.; do Carmo Goncalves, M. Macromolecules 1993, 26(10), 2636-2640. 48. Young, W. S.; Epps III, T. H. Macromolecules 2009, 42(7), 2672-2678. 49. Huang, J.; Tong, Z. Z.; Zhou, B.; Xu, J. T.; Fan, Z. Q. Polymer 2013, 54(12), 3098-3106. 50. Thelen, J. L.; Chen, X. C.; Inceoglu, S.; Balsara, N. P. Macromolecules 2017, 50(12), 4827-4839. 51. Inceoglu, S.; Rojas, A. A.; Devaux, D.; Chen, X. C.; Stone, G. M.; Balsara, N. P. ACS Macro Letters 2014, 3(6), 510-514. 52. Rojas, A. A.; Inceoglu, S.; Mackay, N. G.; Thelen, J. L.; Devaux, D.; Stone, G. M.; Balsara, N. P. Macromolecules 2015, 48, 6589−6595. 53. Thelen, J. L.; Inceoglu, S.; Venkatesan, N. R.; Mackay, N. G.; Balsara, N. P. Macromolecules 2016, 49(23), 9139-9147. 54. Thelen, J. L.; Wang, A. A.; Chen, X. C.; Jiang, X.; Schaible, E.; Balsara, N. P. Macromolecules 2018, 51(5), 1733-1740. 55. Vanlaeke, P. et al. Solar energy materials and solar cells 2006, 90(14), 2150-2158. 56. Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. Journal of the American Chemical Society 2015, 137(5), 1875-1886. 57. Zhao, L.; Pang, X.; Adhikary, R.; Petrich, J. W.; Lin, Z. Angewandte Chemie International Edition 2011, 50(17), 3958-3962. 58. Jia, Z. et al. Frontiers of Materials Science 2018, 12(3), 225-238. 59. Shi, Y.; Tan, L.; Chen, L.; Chen, Y. Macromolecules 2014, 47(5), 1757-1767. 60. Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chemical reviews 2007, 107(4), 1324-1338. 61. Leventis, H. C.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Nano Lett. 2010, 10 (4), 1253−1258. 62. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. science 2002, 295(5564),2425-2427. 63. Wang, P.; Abrusci, A.; Wong, H. M.; Svensson, M.; Andersson, M. R.; Greenham, N. C. Nano letters 2006, 6(8), 1789-1793. 64. Ren, S.; Chang, L. Y.; Lim, S. K.; Zhao, J.; Smith, M.; Zhao, N. Gradecak, S. Nano letters 2011, 11(9), 3998-4002. 65. Beek, W. J.; Wienk, M. M.; Janssen, R. A. Advanced Functional Materials 2006, 16(8), 1112-1116. 66. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. The Journal of Physical Chemistry C 2007, 111(50), 18451-18456. 67. Chuang, C. H.; Lin, Y. Y.; Tseng, Y. H.; Chu, T. H.; Lin, C. C.; Su, W. F.; Chen, C. W. The Journal of Physical Chemistry C 2010, 114(43), 18717-18724. 68. Lee, C. K.; Pao, C. W.; Chen, C. W. Energy & Environmental Science 2013, 6(1), 307-315. 69. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 2011 (pp. 80-84). 70. Lai, C. H.; Lee, W. F.; Wu, I. C.; Kang, C. C.; Chen, D. Y.; Chen, L. J.; Chou, P. T. Journal of Materials Chemistry 2009, 19(39), 7284-7289. 71. Yang, H.; Wang, L.; Zhang, J.; Yu, X.; Geng, Y.; Han, Y. Macromolecular Chemistry and Physics 2014, 215(5), 405-411. 72. Li, J. H.; Li, Y.; Xu, J. T.; Luscombe, C. K. ACS applied materials & interfaces 2017, 9(21), 17942-17948. 73. Liao, H. C.; Chen, S. Y.; Liu, D. M. Macromolecules 2009, 42(17), 6558-6563. 74. Cativo, M. H. M.; Kamps, A. C.; Gao, J.; Grey, J. K.; Hutchison, G. R.; Park, S. J. The Journal of Physical Chemistry B 2012, 117(16), 4528-4535. 75. Manceau, M.; Rivaton, A.; Gardette, J. L.; Guillerez, S.; Lemaître, N. Polymer Degradation and Stability 2009, 94(6), 898-907. 76. Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A. Journal of Physics: Condensed Matter 2008, 20(18), 184025. 77. Lai, Y. Y.; Cheng, Y. J.; Hsu, C. S. Energy & Environmental Science 2014, 7(6), 1866-1883. 78. Kamps, A. C.; Fryd, M.; Park, S. J. ACS nano 2012, 6(3), 2844-2852. 79. Dai, C. A. et al. Journal of Materials Chemistry A 2016, 4(3), 908-919. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77317 | - |
dc.description.abstract | 近年來,共軛高分子與無機奈米粒子的混成材料已被廣泛應用在光電元件上。然而兩者材料混摻最常發生的問題在於因為共軛高分子與無機奈米粒子相容性不佳而產生較嚴重的聚集現象,因此我們需要發展全新高品質的共軛高分子混成系統來有效結合高分子與無機金屬鹽類。在本研究中,我們透過格林鈉反應成功合成出新穎性全共軛段雙親性嵌段共聚物PPP-b-P3EEET。而透過雙親性嵌段共聚物本質上兩端及極性上的差異和控制親油親水兩端的分子量組成比例,可以在不同溶劑下得到微胞或是層狀等奈米自組裝結構。同時可以從溶液顏色與UV吸收範圍的變化等觀察出形態上的改變造成的影響。而像PPP-b-P3EEET這類含有烷氧醚基側鏈的新型材料有幾個特別的現象,例如烷氧基側鏈的氧原子可提供多個螯合位置供金屬離子鍵結且同時這些鍵結的螯合離子剛好可以扮演將原本不容易結晶的P3EEET柔軟彎曲的側鏈拉直而誘發出不同於原本的PPP結晶相而是新的P3EEET非等向性結晶相。這些結晶行為可以透過TEM觀察物質的微結構及GIWAXS/GISAXS的計算高分子晶格大小來做分析。另外,此種雙親性嵌段共聚物可做為合成奈米無機晶體材料原位混成反應系統的基板。我們相信此種新穎性材料在未來探討金屬鹽類誘發結晶用提升載子傳遞速率反應機制的研究及開發高效能光電元件上都有很大的潛力。 | zh_TW |
dc.description.abstract | In recent years, hybrid materials composed of conjugated polymers and inorganic nanoparticles have been widely used for photovoltaic applications. However, these hybrids often suffered from serious morphology uniformity issues due to the easy aggregation problem of inorganic nanocrystals during blending of hydrophobic conjugated polymers and hydrophilic inorganic nanoparticles. Therefore, the development of a new conjugated polymer system that can efficiently incorporate inorganic nanoparticles to fabricate high quality hybrids is greatly required. In this study, we report on the synthesis of a novel amphiphilic rod-rod all-conjugated diblock copolymer poly (2,5-dihexyoxy-p-phenylene)-b-poly (3-[2-(2-ethoxy ethoxy)ethoxy] thiophene) (PPP-P3EEET) via Grignard metathesis method. By varying the intrinsic difference in the amphiphilic between the two constituting blocks and controlling their chain lengths, it can found that these amphiphilic block copolymers self-assemble into various nanostructured including micelles or lamellae upon solvent drying. In addition, the crystalline, morphological, thermal and optical properties of these novel materials including WAXS, SAXS, TEM, DSC, TGA, and UV-VIS absorption measurements are also investigated.The P3EEET block with ethylene oxide side chains of the block copolymers could also be used as chelating sites for metal ions. The morphological transitions of these hybrid materials with different zinc ion loadings were also investigated. In addition, the amphiphilic all-conjugated diblock copolymers could serve as a nanoreactor system to in situ synthesize zinc oxide nanocrystals within the polymer matrix. We believe that this novel material shows potential to be used in future optoelectronic applications. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:55:38Z (GMT). No. of bitstreams: 1 ntu-108-R06549019-1.pdf: 6559556 bytes, checksum: 1fb1040429d83a9150e0c81254509627 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III Contents V List of Figures IX List of Tables XVIII Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2-1 Introduction of conducting polymers 5 2-2 Introduction of amphiphilic copolymers 7 2-3 Synthesis of all-pi conjugated polymers by Grignard Metathesis (GRIM) 11 2-4 Self-assembly of block copolymers 14 2-5 Salt-induced phase separation in block copolymers 17 2-6 In-situ synthesis of organic/inorganic nanohybrid system using block copolymers as templates 22 Chapter 3 Synthesis and Characterization of poly(2,5-dihexyloxybenzene)-b-poly(3-[2-(2-ethoxyethoxy)ethoxy]thiophene) Block Copolymers 27 3-1 Materials and Equipment 27 3-2 Synthesis of amphiphilic conjugated polymer 31 3-2-1 Synthesis of 2,5-dibromo-3-[2-(2-ethoxyethoxy)-ethoxy] thiophene 32 3-2-2 Synthesis of 1, 4-dibromo-2,5-dihexyloxybenzene 35 3-2-3 Synthesis of rr-poly (3-[2-(2-ethoxyethoxy)ethoxy]thiophene) homopolymer 37 3-2-4 Synthesis of PPP-b-P3EEET amphiphilic block copolymers 39 3-3 Results and Characterization 41 3-3-1 Nuclear Magnetic Resonance Spectroscopy (NMR) 41 3-3-2 Gel Permeation Chromatography (GPC) 49 3-3-3 Thermogravimetric Analysis (TGA) of PPP-b-P3EEET 55 3-4 Conclusions 57 Chapter 4 Self-Assembly Nanostructures and Optical Properties of All pi-Conjugated Amphiphilic Block Copolymers PPP-b-P3EEET with Different Main-Chain Moieties 58 4-1 Introduction 58 4-2 Experimental Section 60 4-2-1 Materials 60 4-2-2 Experiments and sample preparation 60 4-3 Results and Discussions 63 4-3-1 The Self-Assembly Crystalline Behaviors of PPP-P3EEET as functions of temperature in Wide-Angle X-ray Scattering(WAXS) and Small-Angle X-ray Scattering(SAXS) measurement 63 4-3-2 Differential Scanning Calorimetry (DSC) 74 4-3-3 The Morphology of PPP-P3EEET Block Copolymers Effected by Different Solvents in the Thin Film 79 4-3-4 Optical properties of PPP-P3EEET Amphiphilic Blcok Copolymers dissolved in Selective Solvents 85 4-5 Conclusions 89 Chapter 5 Salt-Induced Phase Separation Chelating System and In-Situ Synthesis of ZnO/PPP-b-P3EEET Nanohybrid System 91 5-1 Introduction 91 5-2 Experimental Section 93 5-2-1 In-Situ Fabrication of ZnO/PPP-b-P3EEET Nanohybrid 93 5-2-2 Characteristic Examinations 95 5-3 Results and Discussions 97 5-3-1 Morphology of ZnO/PPP-P3EEET Nanohybrid Systems in dilute Solution/Thin Film 97 5-3-2 Crystalline Behavior of Zn2+/PPP-P3EEET and ZnO/PPP-P3EEET Hybrid System with different Block Ratios 103 5-3-3 FTIR and XPS Analysis for investigating the polymer chelating mechanism 110 5-4 Conclusions 114 Reference 116 Appendix 124 | - |
dc.language.iso | en | - |
dc.title | 合成及鑑定全共軛雙親性嵌段共聚高分子及其有機/無機奈米混成系統之研究 | zh_TW |
dc.title | Synthesis and Characterization of All pi-Conjugated Amphiphilic Block Copolymers and Their Application in Organic/Inorganic Nanohybrid Systems | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 戴子安 | zh_TW |
dc.contributor.coadvisor | Chi-An Dai | en |
dc.contributor.oralexamcommittee | 童世煌;王立義 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Huang Tung;Lee-Yih Wang | en |
dc.subject.keyword | 雙親性嵌段共聚物,共軛導電高分子,格林鈉合成反應,高分子自組裝形態,鹽類誘發結晶相分離,奈米原位混成系統,氧化鋅奈米顆粒, | zh_TW |
dc.subject.keyword | Amphiphilic diblock copolymer,Conjugated polymer,Grignard metathesis method,Self-assembly morphology,Salt-induced phase separation,In-situ nanohybrid system,ZnO nanoparticle, | en |
dc.relation.page | 131 | - |
dc.identifier.doi | 10.6342/NTU201902494 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 6.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。