Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77314
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡睿哲zh_TW
dc.contributor.author賴楷穎zh_TW
dc.contributor.authorKai-Ying Laien
dc.date.accessioned2021-07-10T21:55:29Z-
dc.date.available2024-08-12-
dc.date.copyright2019-08-15-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] R. Appleyard, "Pioneers of electrical communication part 5 - Heinrich Rudolph Hertz." Electrical Communication 6(2), pp. 63-77, 1927.
[2] J. S. Belrose, “Fessenden and Marconi: their differing technologies and transatlantic experiments during the first decade of this century.” International Conference on 100 Years of Radio 411, pp. 32-43, 5-7 September 1995.
[3] T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights.” IEEE Transactions on Consumer Electronics 50(1), pp. 100-107, 2004.
[4] H. Haas, “Wireless data from every light bulb.” TEDGlobal 2011, Edinburgh, Scotland, July 11-15, 2011.
[5] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system.” Journal of Lightwave Technology 32(24), pp. 4723-4729, 2014.
[6] M. Zhang, X. Yuan, Y. Huang, “A 10.7 km visible light communications experiment.” 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 231-234, Vienna, Austria, July 5-8, 2016.
[7] H. Chun, C. J. Chiang, D. C. O'Brien, “Visible light communication using OLEDs: Illumination and channel modeling.” 2012 International Workshop on Optical Wireless Communications (IWOW), Pisa, ltaly, October 22-22, 2012.
[8] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, “Visible light communications using organic light emitting diodes.” IEEE Communications Magazine 51(8), pp. 148-154, 2013.
[9] IMDEA Networks introduces the OpenVLC platform for research in Visible Light Communication Systems. http://netcom.it.uc3m.es/news/2016/imdea-networks- introduces-openvlc-platform-research-visible-light-communication-systems.html
[10] G. Kopp, J. L. Lean, “A new, lower value of total solar irradiance: evidence and climate significance.” Geophysical Research Letters 38, L01706, 2011.
[11] 經濟部能源局,能源統計資料查詢系統:https://www.moeaboe.gov.tw/wesnq
[12] D. Liang, J. Almeida, “Highly efficient solar-pumped Nd:YAG laser.” Optics Express 19(27), pp. 26399-26405, 2011.
[13] Z. Guan, C. M. Zhao, S. H. Yang, Y. Wang, J. Y. Ke, H. Y. Zhang, “Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter.” Laser Physics Letters 14(5), 055804, 2017.
[14] C. H. Sterling, Military Communications: From Ancient Times to the 21st Century, ABC-CLIO, 2008, "Heliograph and Mirrors", pp. 208-211.
[15] C. J. Chen, Physics of Solar Energy, Wiley, 2011, Appendix E, pp. 309-312.
[16] L. Janik, M. Novak, A. Dobesch, L. Hudcova, “Retroreflective optical communication.” 2017 Conference on Microwave Techniques (COMITE), Brno, Czech Republic, April 20-21, 2017.
[17] L. Zhou, J. M. Kahn, K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication.” Journal of Microelectromechanical Systems 12(3), pp. 233-242, 2003.
[18] 陳昱帆,三葉草型微機電可調變Corner Cube Retro-reflector (CCR)光學回射器,國立臺灣大學光電工程學研究所,碩士論文,2011。
[19] D. H. Lee, J. Y. Park, “Piezo-electrically actuated micro corner cube retroreflector (CCR) for free-space optical communication applications.” Journal of Electrical Engineering & Technology 5(2), pp. 337-341, 2010.
[20] D. J. Vasquez, J. W. Judy, “Optically-interrogated zero-power MEMS magneto- meter.” Journal of Microelectromechanical Systems 16(2), pp. 336-343, 2007.
[21] Y. F. Chen, Y. H. Wang, J. C. Tsai, “Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam.” Optical Engineering 57(3), 035104, 2018.
[22] 張智傑,應用於光學辨識系統之可獨立調變貓眼回射器陣列,國立臺灣大學光電工程學研究所,碩士論文,2012。
[23] C. C. Chang, K. H. Chao, B. J. Yang, M. C. Su, J. C. Tsai, “Independently-addressed tunable cat’s eye retro-reflector array for an optical identification system.” 2012 International Conference on Optical MEMS and Nanophotonics, pp. 166-167, Banff, AB, Canada, August 6-9, 2012.
[24] E. Rosenkrantz, S. Arnon, “Modulated retro reflector for VLC applications.” Proc. SPIE 9224, 922414, 2014.
[25] The Free Beginner's Guide - 3D Printing Industry. https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide
[26] H. Kodama, “Automatic method for fabricating a threedimensional plastic model with photohardening polymer.” Rev. of Sci. Instrum. 52(11), pp.1770-1773, 1981.
[27] C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography.” U.S. Patent 4575330, March 11, 1986.
[28] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, P. Fino, “Overview on additive manufacturing technologie.” Proceedings of the IEEE 105(4), pp. 593-612, 2017.
[29] W. J. Otter, S. Lucyszyn, “Hybrid 3-D-printing technology for tunable THz applications,” Proceedings of the IEEE 105(4), pp. 756-767, 2017.
[30] 王彥閎,一體成型平面轉摺三維Corner Cube Retroreflector設計及其製作與特性量測,國立臺灣大學光電工程學研究所,碩士論文,2017。
[31] Y. F. Chen, Y. H. Wang, J. C. Tsai, “Enhancement of surface reflectivity of fused deposition modeling parts by post-processing.” Optics Communications 430, pp. 479-485, 2019.
[32] INPLUS:更簡單容易的ABS丙酮拋光。https://inplus.tw/archives/3135
[33] Pinshape Blog: Post Processing PLA and ABS Prints! https://pinshape.com/blog/post-processing-your-pla-and-abs-prints
[34] 3D printing lab:3D打印材料比較- ABS和PLA。 http://www.3dprintinglab.com.hk/blog/abs-pla-3d-printing-material-comparison
[35] B. Agrawal, J. Kubby, “Applications of MEMS in segmented mirror space telescopes.” Proc. SPIE 7931, 793102, 2011.
[36] 宏穎真空鍍金股份有限公司:http://www.he0229661556.vcom.tw
[37] C. Hilsum, “Electro-optic device.” U. K. Patent 1442360, July 14, 1976.
[38] J. W. Doane, N. A. Vaz, B.‐G. Wu, S. Žumer, “Field controlled light scattering from nematic microdroplets.” Appl. Phys. Lett. 48, pp. 269-271, 1986.
[39] I. Dierking, Polymer-modified Liquid Crystals, Royal Society of Chemistry, 2019, Ch. 4, pp. 45-60.
[40] A. D. Remenyuk, E. V. Astrova, R. F. Vitman, T. S. Perova, V. A. Tolmachev, “Alignment of liquid crystal E7 in composite photonic crystals based on single crystal silicon.” Proc. of SPIE 5825, pp. 400-407, 2005.
[41] Norland Products: Norland Optical Adhesive 65. https://www.norlandprod.com/adhesives/NOA%2065.html
[42] 古政鴻,利用PDLC之固體步階調控光圈的設計與製作,國立臺灣大學光電工程學研究所,碩士論文,2018。
[43] 陳帛鈞,無移動結構之可調變固態微型光圈,國立臺灣大學光電工程學研究 所,碩士論文,2015。
[44] 呂承桓,固體微型可調變光圈之設計、製作與特性量測,國立臺灣大學光電工程學研究所,碩士論文,2016。
[45] BenQ Materials Corp.: PDLC Smart Window Film. http://www.benqmaterials.com/en-ww/product/film_detail.php?SID=14
[46] K. Y. Lai, W. T. Chen, Y. H. Wu, Y. F. Chen, and J. C. Tsai, “3D-Printed and PDLC-tuned corner cube retro-reflector for sunlight communication.” 2019 International Conference on Optical MEMS and Nanophotonics (IEEE OMN 2019), Daejeon, Korea, July 28 - August 1, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77314-
dc.description.abstract我們提出利用3D列印製作可調變反射元件的構想,並嘗試CCR回射器與拋物面鏡的設計或製作:元件在設計上為二維結構並首先以TracePro進行光追跡模擬以確認可行性,之後以FDM機台印製並交由廠商鍍覆鋁金屬做為反射面與元件之下電極,在製作PDLC層作為光強度調變機制後將元件摺起組裝以進行量測。
我們製作出的CCR元件各邊長為6.8公分,PDLC層約在壓幅45 V的1 kHz交流電下可達到On-state,並觀察到對比度5.97的明暗訊號。拋物面鏡則暫止於參數設計與初步組裝的模型,面鏡設計經徑向分析可以達到百分之百的收光效率,周向上的分割數、直徑大小及其所能達到的收光效率則在本文中定義了效率評估函數M來大致關聯,3D列印的面鏡僅在焦距20 cm下摺起時已十分接近平面鏡。
本研究之反射元件的主要創新點有三:第一,以3D列印製作元件,方便元件在研發階段的參數設計與測試,並允許微機械加工不易達成的大面積元件製作而因此適用大尺度的可見光通訊系統,此外3D列印的材料特性使成品更輕便可攜;第二,使用PDLC進行訊號調變,相對於斬光器等機械式調變構造輕薄且容易製作,並可直接透過電控進行調變;第三,以太陽光作通訊光源為目標,預計在室外提供無光源配置的被動元件通訊,並因為元件的反(回)射特性使移動物間的可見光通訊成為可能。
zh_TW
dc.description.abstractWe proposed tunable reflecting components, corner-cube retroreflectors (CCR) and parabolic concave mirrors, which are developed by 3D-printing process. After the dimensions are determined, the designed structures are ray-traced in TracePro for preliminary surety of their feasibilities. The structures are initially printed flat, and after PVD-deposited aluminum coating and applied with a tunable PDLC layer, folded into the target devices.
A 3D-printed CCR with each side of 6.8 cm are incorporated with a tunable PDLC layer; the contrast between the On- and Off-states can reach 5.97 at 45 V voltage amplitude. The development of parabolic concave mirrors is right on a stage of dimensional designing; analysis on radial and circumference aspects are conducted for an equation relates the dimensions to the light receiving efficiency. A 3D-printed prototype with the focal length of 20 cm is further constructed while its overall surface is nearly flat.
Tunable reflecting devices proposed here have some benefits. First, 3D-printed structures are lightweight and the fabrication process is timesaving and low-cost. Second, PDLC-tuning layer is lighter and easier to form than those mechanisms based on mechanical tuning. The target of our devices is to be served in outdoor sunlight communication systems, potentially enabling motive visible light communication.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:55:29Z (GMT). No. of bitstreams: 1
ntu-108-R06941058-1.pdf: 3636146 bytes, checksum: 3925846145df8648025d0b056d8f75b0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
Chapter 1. 緒論 1
1.1 前言 1
1.2 可見光通訊 1
1.3 太陽光源 3
1.4 反射元件與光訊號調變 4
1.5 3D列印 6
Chapter 2. 設計理念與製程 9
2.1 3D列印基材與表面平整性 9
2.2 列印材料選擇:PLA或ABS 11
2.3 摺紙結構 14
2.4 真空金屬鍍膜 15
2.5 PDLC調變層 16
2.6 元件表現量測 19
Chapter 3. CCR的設計、製作與量測 20
3.1 幾何與尺寸設計 20
3.2 列印溫度調整與鏡面鍍覆 23
3.3 PDLC調變層製作 24
3.4 CCR的光學量測 28
3.5 總結、討論與附記 32
Chapter 4. 拋物面鏡 33
4.1 幾何與尺寸設計 33
4.1.1 徑向分析 (Radial Analysis) 33
4.1.2 周向分析 (Circumferential Analysis) 37
Chapter 5. 結論與未來展望 47
5.1 結論 47
5.2 未來展望 48
5.2.1 表面處理 48
5.2.2 CCR的組裝方式 48
5.2.3 系統架設 49
5.2.4 可能調變方式 50
參考文獻 52
-
dc.language.isozh_TW-
dc.title以3D列印製作用於太陽光通訊的可調變反射元件zh_TW
dc.title3D-Printed Tunable Reflecting Optical Components for Sunlight Communicationen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee孫家偉;鍾仁傑zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword3D列印,可見光通訊,摺紙結構,高分子分散型液晶(PDLC),太陽光通訊,立方角回射器(CCR),拋物面鏡,zh_TW
dc.subject.keyword3D-printing,visible light communication (VLC),origami structure,polymer-dispersed liquid crystal (PDLC),sunlight communication,corner-cube retroreflector (CCR),parabolic concave mirror,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU201902619-
dc.rights.note未授權-
dc.date.accepted2019-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved