請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77297完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃天偉 | zh_TW |
| dc.contributor.advisor | Tian-Wei Huang | en |
| dc.contributor.author | 周佑運 | zh_TW |
| dc.contributor.author | You-Yun Chou | en |
| dc.date.accessioned | 2021-07-10T21:54:43Z | - |
| dc.date.available | 2024-08-12 | - |
| dc.date.copyright | 2019-08-19 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] David M. Pozar, Microwave Engineering, 4th Edition, pp. 328-334, 2012.
[2] Ramesh Garg, Inder Bahl, Maurizio Bozzi, Microstrip Lines and Slotlines, 3^rd Edition, pp.181-185, 2013. [3] S. Adya, A. Jain, D. Sharma, A. Gupta and V. Bhalla, “Design and fabrication of microstrip equal Wilkinson RF power divider at 650MHz using MWO,” 2017 IEEE Applied Electromagnetics Conference (AEMC), Aurangabad, 2017, pp. 1-2. [4] K. Janisz, K. Wincza and S. Gruszczynski, “Differential lumped-element Wilkinson power divider for use in MMIC systems,” 2017 Mediterranean Microwave Symposium (MMS), Marseille, 2017, pp. 1-3.. [5] N. Najib, K. Y. You, C. Y. Lee, M. N. Dimon and N. H. Khamis, “Compact and wideband modified wilkinson power dividers,” 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, 2017, pp. 1-4. [6] M. Chiang, H. Wu and C. C. Tzuang, “A Ka-Band CMOS Wilkinson Power Divider Using Synthetic Quasi-TEM Transmission Lines,” in IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 837-839, Dec. 2007. [7] M. Balducci and H. Schumacher, “Ka band passive differential 4:1 power divider/combiner based on wilkinson topology,” 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Giardini Naxos, 2017, pp. 189-192. [8] X. Hongjie, Z. Yonghong and F. Yong, “Ka-Band Wilkinson Power Divider Based on Chip Resistor,” 2007 International Conference on Microwave and Millimeter Wave Technology, Builin, 2007, pp. 1-4. [9] D. Antsos, R. Crist and L. Sukamto, “A novel Wilkinson power divider with predictable performance at K and Ka-band,” 1994 IEEE MTT-S Int. Microw. Symp. Dig. (Cat. No.94CH3389-4), San Diego, CA, USA, 1994, pp. 907-910 vol.2. [10] E. J. Wilkinson, “An N-Way Hybrid Power Divider,” in IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 1, pp. 116-118, January 1960. [11] D. De, A. Prakash, N. Chattoraj, P. K. Sahu and A. Verma, “Design and analysis of various Wilkinson Power Divider Networks for L band applications,” 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 2016, pp. 67-72. [12] A. A. Rauf, J. Tahir, A. Raza, A. Ali and I. H. Umrani, “16 ways X-band wilkinson power divider for phased array transmitter,” 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, 2018, pp. 835-840. [13] F. Ellinger, H. Jackel and W. Bachtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” in IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1135-1140, April 2003. [14] F. Ellinger, R. Vogt and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” in IEEE Trans. Microw. Theory Techn., vol. 49, no. 5, pp. 913-917, May 2001. [15] M. Tsai and A. Natarajan, “60GHz passive and active RF-path phase shifters in silicon,” 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, 2009, pp. 223-226. [16] M. Tabesh, A. Arbabian and A. Niknejad, “60GHz low-loss compact phase shifters using a transformer-based hybrid in 65nm CMOS,” 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2011, pp. 1-4. [17] R. B. Yishay and D. Elad, “A 57–66 GHz reflection-type phase shifter with near-constant insertion loss,” 2016 IEEE MTT-S Int. Microw. Symp. (IMS), San Francisco, CA, 2016, pp. 1-4. [18] K. Koh and G. M. Rebeiz, “0.13-μm CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays,” in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007. [19] W. Shin and G. M. Rebeiz, “60 GHz active phase shifter using an optimized quadrature all-pass network in 45nm CMOS,” 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, 2012, pp. 1-3. [20] J. Wu, J. Kao, J. Kuo, K. Kao and K. Lin, “A 60-GHz single-ended-to-differential vector sum phase shifter in CMOS for phased-array receiver,” 2011 IEEE MTT-S Int. Microw. Symp., Baltimore, MD, 2011, pp. 1-4. [21] P. Peng, J. Kao and H. Wang, “A 57-66 GHz Vector Sum Phase Shifter with Low Phase/Amplitude Error Using a Wilkinson Power Divider with LHTL/RHTL Elements,” 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, 2011, pp. 1-4. [22] Dong-Woo Kang, Hui Dong Lee, Chung-Hwan Kim and Songcheol Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-/spl mu/m CMOS technology,” in IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 294-301, Jan. 2006. [23] B. Min and G. M. Rebeiz, “Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends,” in IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008. [24] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, “60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation,” in IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1224-1235, March 2013. [25] S. Y. Kim and G. M. Rebeiz, “A 4-Bit Passive Phase Shifter for Automotive Radar Applications in 0.13 μm CMOS,” 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium, Greensboro, NC, 2009, pp. 1-4. [26] H. Lee and B. Min, “W-Band CMOS 4-Bit Phase Shifter for High Power and Phase Compression Points,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 1-5, Jan. 2015. [27] J. F. Buckwalter, A. Babakhani, A. Komijani and A. Hajimiri, “An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter,” in IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4271-4280, Dec. 2006. [28] L. Wu, A. Li and H. C. Luong, “A 4-Path 42.8-to-49.5 GHz LO Generation With Automatic Phase Tuning for 60 GHz Phased-Array Receivers,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2309-2322, Oct. 2013. [29] T. Kijsanayotin, J. Li and J. F. Buckwalter, “A 70-GHz LO Phase-Shifting Bidirectional Frontend Using Linear Coupled Oscillators,” in IEEE Trans. Microw. Theory Techn., vol. 65, no. 3, pp. 892-904, March 2017. [30] N. Ebrahimi, P. Wu, M. Bagheri and J. F. Buckwalter, “A 71–86-GHz Phased Array Transceiver Using Wideband Injection-Locked Oscillator Phase Shifters,” in IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 346-361, Feb. 2017. [31] A. Hajimiri, H. Hashemi, A. Natarajan, Xiang Guan and A. Komijani, “Integrated Phased Array Systems in Silicon,” in Proceedings of the IEEE, vol. 93, no. 9, pp. 1637-1655, Sept. 2005. [32] A. Hajimiri, A. Komijani, A. Natarajan, R. Chunara, X. Guan and H. Hashemi, “Phased array systems in silicon,” in IEEE Communications Magazine, vol. 42, no. 8, pp. 122-130, Aug. 2004. [33] Y. A. Atesal, B. Cetinoneri, K. M. Ho and G. M. Rebeiz, “A Two-Channel 8–20-GHz SiGe BiCMOS Receiver With Selectable IFs for Multibeam Phased-Array Digital Beamforming Applications,” in IEEE Trans. Microw. Theory Techn., vol. 59, no. 3, pp. 716-726, March 2011. [34] M. Tabesh et al., “A 65nm CMOS 4-element Sub-34mW/element 60GHz phased-array transceiver,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, 2011, pp. 166-168. [35] L. Wu, A. Li and H. C. Luong, “A 4-Path 42.8-to-49.5 GHz LO Generation With Automatic Phase Tuning for 60 GHz Phased-Array Receivers,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2309-2322, Oct. 2013. [36] T. Kijsanayotin, J. Li and J. F. Buckwalter, “A 70-GHz LO Phase-Shifting Bidirectional Frontend Using Linear Coupled Oscillators,” in IEEE Trans. Microw. Theory Techn., vol. 65, no. 3, pp. 892-904, March 2017. [37] N. Ebrahimi, P. Wu, M. Bagheri and J. F. Buckwalter, “A 71–86-GHz Phased Array Transceiver Using Wideband Injection-Locked Oscillator Phase Shifters,” in IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 346-361, Feb. 2017. [38] H. Hashemi, Xiang Guan, A. Komijani and A. Hajimiri, “A 24-GHz SiGe phased-array receiver-LO phase-shifting approach,” in IEEE Trans. on Microw. Theory Techn., vol. 53, no. 2, pp. 614-626, Feb. 2005. [39] A. Natarajan, A. Komijani, X. Guan, A. Babakhani and A. Hajimiri, “A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting,” in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2807-2819, Dec. 2006. [40] A. Valdes-Garcia et al., “A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010. [41] A. Natarajan et al., “A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1059-1075, May 2011. [42] S. Emami et al., “A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, 2011, pp. 164-166. [43] J. Kuo et al., “60-GHz Four-Element Phased-Array Transmit/Receive System-in-Package Using Phase Compensation Techniques in 65-nm Flip-Chip CMOS Process,” in IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 743-756, March 2012. [44] S. Y. Kim and G. M. Rebeiz, “A Low-Power BiCMOS 4-Element Phased Array Receiver for 76–84 GHz Radars and Communication Systems,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 359-367, Feb. 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77297 | - |
| dc.description.abstract | 本論文為用於衛星通訊系統元件之研究與設計。隨著第五代通訊(5G mobile network)的來臨,衛星通訊持續朝向更大的頻寬及更高的傳輸速率發展。現今衛星通訊的主要使用頻段為19 GHz及29 GHz,而本論文將以29 GHz頻段的元件做為主要的內容。
本論文分為二個部分,第一部分為威爾金森分波器的介紹與研究。使用增強型(E-mode)0.15-μm 砷化鎵(GaAs)製程,設計兩顆分別為19 GHz以及29 GHz分波器。探討實行封裝及設計電路板,將電路模組化後所產生的問題,如:鎊線(wire bonding)。比較模組化前後電路特性的差距,討論並加以改良,以利於下一次的設計。 第二部分提出兩顆0.18-μm CMOS製程下29 GHz整合電路,一顆是功率放大器整合其直流電源,將原本三個0.9 V的閘極電壓整合為一個並觀測其結果,此目的是為了之後,將閘極電壓以及汲極電壓進行整合,使電路最後僅需一個輸入電壓。另一顆為相移器和功率放大器的整合電路,使用於衛星通訊系統發射器的部分。 | zh_TW |
| dc.description.abstract | This thesis is a research and design for satellite communication. With the coming of the fifth generation mobile communication (5G), the satellite communication continue working on bigger bandwidth and higher data rate. Nowadays, the satellite communication main frequency bands are 19 GHz and 29 GHz. The main content of this thesis focuses on 29 GHz components.
This thesis is divided into two parts. The first part (Chapter 2) is about the introduction and research of wilkinson power divider. Fabricating in 0.15-μm enhancement mode (E-mode) GaAs PHEMT, design two separately power divider. One is 19 GHz, the other is 29GHz. Discussing the packaging in these chips, some problems with modularization are taken into considerations. For example, wire bonding effect. By comparing the performance before and after modularization, debugging and improvement the modules. In order to make the next time designing have better performance. The second part (Chapter 3) present two integration circuit at 29 GHz which is fabricated in 0.18-μm CMOS. One is a power amplifier combining the bias circuit. In order to combine all the input voltage, this time just combine the 3-stage gate voltage in to one. The other integration circuit is combine phase shifter and power amplifier. This circuit is designed for the satellite communication transmitting part. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:54:43Z (GMT). No. of bitstreams: 1 ntu-108-R06942026-1.pdf: 3750521 bytes, checksum: aeabd8e09e3b24cd176c9aa82bee22ca (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 審定書 I
誌謝 II 中文摘要 IV ABSTRACT V CONTENTS VII LIST OF FIGURES IX LIST OF TABLES XV CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 DESIGN OF 19 GHZ & 29 GHZ POWER DIVIDER IN 0.15-uM GAAS PHEMT PROCESS 4 2.1 INTRODUCTION 4 2.1.1. Fundamental of Power Divider [1] 6 2.1.2. Fundamental of Wilkinson Power Divider [1] 9 2.2 CIRCUIT DESIGN 15 2.2.1. Design Flow 15 2.2.2. Layout Design and Limits 17 2.2.3. Simulation Results 29 2.2.4. The Layout Schematic 35 2.3 EXPERIMENTAL RESULTS 36 2.3.1. WPD On Wafer Probe 36 2.3.2. WPD on Module 47 2.4 SUMMARY 54 CHAPTER 3 A 29 GHZ POWER AMPLIFIER AND TWO-WAY PHASE SHIFTER WITH BUFFER AMPLIFIER IN 180-NM CMOS TECHNOLOGY 55 3.1 INTRODUCTION 55 3.1.1. MMW Phase Shifters 57 3.2 FUNDAMENTAL OF PHASE SHIFTER 61 3.2.1. Introduction of Phase Array [31] [32] 61 3.2.2. Phased Array Architectures 62 3.2.3. Overview of Phase Shifter 65 3.3 EXPERIMENTAL RESULTS 70 3.3.1. Power Amplifier 70 3.3.2. Two-way Phase Shifter with Buffer Amplifier 74 3.4 SUMMARY 83 CHAPTER 4 CONCLUSIONS 84 REFERENCES 85 | - |
| dc.language.iso | en | - |
| dc.subject | 功率分波器 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 相移器 | zh_TW |
| dc.subject | 衛星通訊 | zh_TW |
| dc.subject | power divider | en |
| dc.subject | satellite communication | en |
| dc.subject | phase shifter | en |
| dc.subject | power amplifier | en |
| dc.title | 應用於毫米波發射器之29GHz功率放大器和相移器設計 | zh_TW |
| dc.title | Design of 29GHz Power Amplifier and Phase Shifter for Millimeter-Wave Transmitter Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡政翰;張嘉展 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Han Tsai;Chia-Chan Chang | en |
| dc.subject.keyword | 功率分波器,功率放大器,相移器,衛星通訊, | zh_TW |
| dc.subject.keyword | power divider,power amplifier,phase shifter,satellite communication, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU201902715 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 3.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
