Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民zh_TW
dc.contributor.advisorWinston Hsuen
dc.contributor.author王凱群zh_TW
dc.contributor.authorKai-Chun Wangen
dc.date.accessioned2021-07-10T21:54:30Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-13-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027, 2019.
[2] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun. 3d object proposals for accurate object class detection. In Advances in Neural Information Processing Systems, pages 424–432, 2015.
[3] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection network for autonomous driving. In IEEE CVPR, volume 1, page 3, 2017.
[4] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.
[5] L. Huang, Y. Yang, Y. Deng, and Y. Yu. Densebox: Unifying landmark localization with end to end object detection. arXiv preprint arXiv:1509.04874, 2015.
[6] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3d proposal generation and object detection from view aggregation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–8. IEEE, 2018.
[7] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 12697–12705, 2019.
[8] B. Li, T. Zhang, and T. Xia. Vehicle detection from 3d lidar using fully convolutional network. arXiv preprint arXiv:1608.07916, 2016.
[9] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep continuous fusion for multi-sensor 3d object detection. In Proceedings of the European Conference on Computer Vision (ECCV), pages 641–656, 2018.
[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. IEEE transactions on pattern analysis and machine intelligence, 2018.
[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016.
[12] A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká. 3d bounding box estimation using deep learning and geometry. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 5632–5640. IEEE, 2017.
[13] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 918–927, 2018.
[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.
[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in Neural Information Processing Systems, pages 5099–5108, 2017.
[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016.
[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.
[18] K. Shin, Y. P. Kwon, and M. Tomizuka. Roarnet: A robust 3d object detection based on region approximation refinement. arXiv preprint arXiv:1811.03818, 2018.
[19] M. Simon, S. Milz, K. Amende, and H.-M. Gross. Complex-yolo: An euler-region-proposal for real-time 3d object detection on point clouds. In European Conference on Computer Vision, pages 197–209. Springer, 2018.
[20] Z. Wang and K. Jia. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection. arXiv preprint arXiv:1903.01864, 2019.
[21] Y. Yan, Y. Mao, and B. Li. Second: Sparsely embedded convolutional detection. Sensors, 18(10):3337, 2018.
[22] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 7652–7660, 2018.
[23] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4490–4499, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77292-
dc.description.abstract三維物件偵測是自動車領域很重要的問題。過去的方法利用深度學習在二維影像偵測的成功經驗設計三維物件偵測的架構。大多數的方法著重在如何有效地從點雲抽取的特徵,或是如何有效地融合點雲及圖片的特徵,然而卻無人深究光達點雲與圖片的不同。在這篇論文中,我們研究光達點雲的分布並提出兩點觀察:一,點雲的稀疏度與物件與感測器的遠近有關;二,物件被感測的部分與物件和感測器的相對方向有關。基於上述的觀察,我們提出了創新的深度學習架構:PolarPillars,將點雲轉換至極座標後進行學習,使網路能對物件的方向具有不變性。我們將網路測試在KITTI及nuScenes資料集,實驗的結果顯示我們方法的準確度能超越當前最先進的偵測器,並且應用至360度環景偵測時能有更好的泛化能力。zh_TW
dc.description.abstract3D object detection is a crucial problem in autonomous driving. Previous methods exploit the success in 2D images to build 3D detection frameworks. Most of them focus on how to extract robust features from raw point clouds or how to fuse extracted features with image features, while few study the characteristics of point clouds generated from LiDAR sensors. In this paper, we study the distribution of LiDAR point clouds, and observe two priors. First, the observed part of objects is related to objects' direction to LiDAR sensor. Second, the sparsity of scanned point cloud is related to object's distance to LiDAR sensor. We propose a novel PolarPillars to exploit our observations, which learns point clouds' features in polar coordinates to make our network invariant to object directions. We test our network on KITTI 3D object detection benchmark and nuScenes dataset. The experiment result shows our network achieves higher accuracy than state of the art methods, and has higher generalizability when applied to 360 degree point clouds.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:54:30Z (GMT). No. of bitstreams: 1
ntu-108-R06922079-1.pdf: 5919335 bytes, checksum: f076551d84110e7962d2f1b8c81edad0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
1 Introduction...1
2 Related Works...4
2.1 Projection-based Approaches...4
2.2 PointNet-based Approaches...4
3 Motivation...6
3.1 Terminology...6
3.2 Priors of LiDAR Sensor...6
3.3 Polar Coordinate Transform...9
4 Method...11
4.1 Input Representation...11
4.2 Network...12
4.3 Anchor Design...12
4.4 Learning Target...13
5 Experiments...15
5.1 Dataset...15
5.2 Evaluation metric...16
5.3 Baseline and Setting...16
5.4 Training...17
6 Results...18
6.1 KITTI...18
6.2 Qualitative Comparison...20
6.3 Ablation Studies...20
6.4 Generalizability Test...22
7 Conclusion...24
Bibliography...25
-
dc.language.isoen-
dc.titlePolarPillars:針對光達點雲之360度物件偵測器zh_TW
dc.titlePolarPillars: A 360 Object Detector for LiDAR Point Cloudsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文進;余能豪;葉梅珍;黃俊翔zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword三維物件偵測,光達感測器,三維深度學習,自動車,zh_TW
dc.subject.keyword3D Object Detection,LiDAR Sensor,3D Deep Learning,Autonomous Driving,en
dc.relation.page27-
dc.identifier.doi10.6342/NTU201902766-
dc.rights.note未授權-
dc.date.accepted2019-08-08-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
5.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved