Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77274
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭旭君(Hsu-Chun Hsiao)
dc.contributor.authorSu-Chin Linen
dc.contributor.author林書瑾zh_TW
dc.date.accessioned2021-07-10T21:53:44Z-
dc.date.available2021-07-10T21:53:44Z-
dc.date.copyright2021-03-08
dc.date.issued2021
dc.date.submitted2021-02-08
dc.identifier.citationAdguard Team. Adguardfilters - adguard content blocking filters.https://github.com/AdguardTeam/AdguardFilters, 2020. [Online; accessed 16-October-2020].
aeris. Address 1st-party tracker blocking.https://github.com/uBlockOrigin/uBlock-issues/issues/780, 2020. [Online; accessed 16-October-2020].
M. Alrizah, S. Zhu, X. Xing, and G. Wang. Errors, misunderstandings, and attacks:Analyzing the crowdsourcing process of ad-blocking systems. InProceedings of theInternet Measurement Conference, IMC’19, page 230–244, New York, NY, USA,2019. Association for Computing Machinery.
AppendAd Ltd (DBA FirstImpression.io). Ads.txt industry dashboard.https://adstxt.firstimpression.io/, 2020. [Online; accessed 16-October-2020].
axios contributors. axios - promise based http client for the browser and node.js.https://github.com/axios/axios, 2020. [Online; accessed 16-October-2020].
M. A. Bashir, S. Arshad, E. Kirda, W. Robertson, and C. Wilson. How tracking com-panies circumvented ad blockers using websockets. InProceedings of the InternetMeasurement Conference 2018, pages 471–477, 2018.
J. Bau, J. Mayer, H. Paskov, and J. C. Mitchell. A promising direction for webtracking countermeasures.Proceedings of W2SP, 2013.
S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and B. Ziebart. Leveraging ma-chine learning to improve unwanted resource filtering. InProceedings of the 2014Workshop on Artificial Intelligent and Security Workshop, pages 95–102, 2014.39.
F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, andC. Wilson. Measurement and analysis of private key sharing in the https ecosystem.InProceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-cations Security, CCS’16, page 628–640, New York, NY, USA, 2016. Associationfor Computing Machinery.
Chromium Developers. The chromium projects.https://www.chromium.org/,2020. [Online; accessed 16-October-2020].
Common Crawl Foundation. Common crawl.https://commoncrawl.org/, 2020.
Conva Ventures Inc. Bypass ad-blockers with custom domains - fathom analytics,2020.https://usefathom.com/blog/bypass-adblockers.
H. Dao and K. Fukuda. A machine learning approach for detecting cname cloaking-based tracking on the web.arXiv preprint arXiv:2009.14330, 2020.
Disconnect, Inc. disconnectme_disconnect-tracking-protection canonical repositoryfor the disconnect services file, 2020.https://github.com/disconnectme/disconnect-tracking-protection.
EasyList contributors. Easylist - policy.https://easylist.to/pages/policy.html.
EasyList contributors. What is acceptable first-party tracking?https://easylist.to/2011/08/31/what-is-acceptable-first-party-tracking.html. [Online; accessed29-January-2021].
EasyList contAdguard Team. Adguardfilters - adguard content blocking filters.https://github.com/AdguardTeam/AdguardFilters, 2020. [Online; accessed 16-October-2020].
aeris. Address 1st-party tracker blocking.https://github.com/uBlockOrigin/uBlock-issues/issues/780, 2020. [Online; accessed 16-October-2020].
M. Alrizah, S. Zhu, X. Xing, and G. Wang. Errors, misunderstandings, and attacks:Analyzing the crowdsourcing process of ad-blocking systems. InProceedings of theInternet Measurement Conference, IMC’19, page 230–244, New York, NY, USA,2019. Association for Computing Machinery.
AppendAd Ltd (DBA FirstImpression.io). Ads.txt industry dashboard.https://adstxt.firstimpression.io/, 2020. [Online; accessed 16-October-2020].
axios contributors. axios - promise based http client for the browser and node.js.https://github.com/axios/axios, 2020. [Online; accessed 16-October-2020].
M. A. Bashir, S. Arshad, E. Kirda, W. Robertson, and C. Wilson. How tracking com-panies circumvented ad blockers using websockets. InProceedings of the InternetMeasurement Conference 2018, pages 471–477, 2018.
J. Bau, J. Mayer, H. Paskov, and J. C. Mitchell. A promising direction for webtracking countermeasures.Proceedings of W2SP, 2013.
S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and B. Ziebart. Leveraging ma-chine learning to improve unwanted resource filtering. InProceedings of the 2014Workshop on Artificial Intelligent and Security Workshop, pages 95–102, 2014.39.
F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, andC. Wilson. Measurement and analysis of private key sharing in the https ecosystem.InProceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-cations Security, CCS’16, page 628–640, New York, NY, USA, 2016. Associationfor Computing Machinery.
Chromium Developers. The chromium projects.https://www.chromium.org/,2020. [Online; accessed 16-October-2020].
Common Crawl Foundation. Common crawl.https://commoncrawl.org/, 2020.
Conva Ventures Inc. Bypass ad-blockers with custom domains - fathom analytics,2020.https://usefathom.com/blog/bypass-adblockers.
H. Dao and K. Fukuda. A machine learning approach for detecting cname cloaking-based tracking on the web.arXiv preprint arXiv:2009.14330, 2020.
Disconnect, Inc. disconnectme_disconnect-tracking-protection canonical repositoryfor the disconnect services file, 2020.https://github.com/disconnectme/disconnect-tracking-protection.
EasyList contributors. Easylist - policy.https://easylist.to/pages/policy.html.
EasyList contributors. What is acceptable first-party tracking?https://easylist.to/2011/08/31/what-is-acceptable-first-party-tracking.html. [Online; accessed29-January-2021].
EasyList contributors. Easylist - overview.https://easylist.to/, 2020. [Online;accessed 16-October-2020].
European Commission.2018 reform of EU data protection rules.40.
K. Garimella, O. Kostakis, and M. Mathioudakis. Ad-blocking: A study on per-formance, privacy and counter-measures. InProceedings of the 2017 ACM on WebScience Conference, pages 259–262, 2017.
A. Gervais, A. Filios, V. Lenders, and S. Capkun. Quantifying web adblocker pri-vacy. InEuropean Symposium on Research in Computer Security, pages 21–42.Springer, 2017.
Google. Adguard adblocker - chrome web store.https://chrome.google.com/webstore/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg. [On-line; accessed 20-January-2021].
Google. ublock origin - chrome web store.https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm. [Online; accessed29-January-2021].
Google. Public dns | google developers.https://developers.google.com/speed/public-dns, 2020. [Online; accessed 16-October-2020].
D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An automated approach forcomplementing ad blockers’blacklists.Proceedings on Privacy Enhancing Tech-nologies, 2015(2):282–298, 2015.
S. S. Hashmi, M. Ikram, and M. A. Kaafar. A longitudinal analysis of online ad-blocking blacklists. In2019 IEEE 44th LCN Symposium on Emerging Topics inNetworking (LCN Symposium), pages 158–165. IEEE, 2019.
IAB Technology Laboratory. ads.txt - authorized digital sellers - iab tech lab.https://iabtechlab.com/ads-txt/, 2020. [Online; accessed 16-October-2020].
M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishnamurthy. Towardsseamless tracking-free web: Improved detection of trackers via one-class learning.Proceedings on Privacy Enhancing Technologies, 2017(1):79–99, 2017.41.
Internet Archive. Wayback cdx server api - beta.https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server, 2020. [Online; accessed 16-October-2020].
Internet Archive. Wayback machine.http://web.archive.org/, 2020. [Online;accessed 16-October-2020].
Internet Corporation for Assigned Names and Numbers. Temporary specificationfor gtld registration data - icann.https://www.icann.org/resources/pages/gtld-registration-data-specs-en/, 2021. [Online; accessed 3-February-2021].
U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: Retrospective measurement andanalysis of anti-adblock filter lists. InProceedingsofthe2017InternetMeasurementConference, IMC’17, page 171–183, New York, NY, USA, 2017. Association forComputing Machinery.
U. Iqbal, Z. Shafiq, P. Snyder, S. Zhu, Z. Qian, and B. Livshits. Adgraph: Amachine learning approach to automatic and effective adblocking.arXiv preprintarXiv:1805.09155, 41, 2018.
U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq. Adgraph: A graph-based approach to ad and tracker blocking. In2020 IEEE Symposium on Securityand Privacy (SP), pages 763–776. IEEE, 2020.
K. S. Jones. A statistical interpretation of term specificity and its application inretrieval.Journal of documentation, 1972.
A. J. Kaizer and M. Gupta. Towards automatic identification of javascript-orientedmachine-basedtracking. InProceedingsofthe2016ACMonInternationalWorkshopon Security And Privacy Analytics, pages 33–40, 2016.
A. H. Kargaran, M. S. Akhondzadeh, M. R. Heidarpour, M. H. Manshaei, K. Sala-matian, and M. N. Sattary. On detecting hidden third-party web trackers with awide dependency chain graph: A representation learning approach.arXiv preprintarXiv:2004.14826, 2020.42.
Kayce Basques. Network analysis reference.https://developers.google.com/web/tools/chrome-devtools/network/reference, 2020. [Online; accessed 16-October-2020].
V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.Tranco: A research-oriented top sites ranking hardened against manipulation. InPro-ceedings of the 26th Annual Network and Distributed System Security Symposium,NDSS 2019, Feb. 2019.
D. Lee, J. Rowe, C. Ko, and K. Levitt. Detecting and defending against web-serverfingerprinting. In18th Annual Computer Security Applications Conference, 2002.Proceedings., pages 321–330, Dec 2002.
A. Mathur, J. Vitak, A. Narayanan, and M. Chetty. Characterizing the use of browser-based blocking extensions to prevent online tracking. InFourteenth Symposium onUsable Privacy and Security (fSOUPSg2018), pages 103–116, 2018.
Mozilla and individual contributors. dns - mozilla | mdn.https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/dns, 2020. [Online;accessed 04-October-2020].
Mozilla Foundation. Public suffix list.https://publicsuffix.org/, 2020. [Online;accessed 16-October-2020].
M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting anti ad-blockers in the wild.Proceedings on Privacy Enhancing Technologies, 2017(3):130–146, 2017.
M. H. Mughees, Z. Qian, Z. Shafiq, K. Dash, and P. Hui. A first look at ad-blockdetection: A new arms race on the web.arXiv preprint arXiv:1605.05841, 2016.
A. Nappa, R. F. Munir, I. K. Tanoli, C. Kreibich, and J. Caballero. Revprobe: De-tecting silent reverse proxies in malicious server infrastructures. InProceedings ofthe 32nd Annual Conference on Computer Security Applications, ACSAC ’16, page101–112, New York, NY, USA, 2016. Association for Computing Machinery.43.
NetApplications. Browser market share.https://netmarketshare.com/, 2020.
R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar, J. E.Powles, E. De Cristofaro, H. Haddadi, and S. J. Murdoch. Adblocking and counterblocking: A slice of the arms race. In6thfUSENIXgWorkshop on Free and OpenCommunications on the Internet (fFOCIg16), 2016.
Peter Lowe. Blocking with ad server and tracking server hostnames.https://pgl.yoyo.org/adservers/index.php, 2020. [Online; accessed 16-October-2020].
Romain Cointepas, NextDNS Inc. Cname cloaking, the dangerous dis-guise of third-party trackers | by romain cointepas | nextdns | medium.https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a, 2020. [Online; accessed 16-October-2020].
M. Ruef. httprecon project - advanced http fingerprinting.https://www.computec.ch/projekte/httprecon/, 2020. [Online; accessed 16-October-2020].
N. Savchenko. Github - dataunlocker_save-analytics-from-content-blockers_ aproxy back end for google tag manager google analytics, 2020.https://github.com/dataunlocker/save-analytics-from-content-blockers.
Sectigo Limited. crt.sh | certificate search.https://crt.sh/, 2020. [Online; accessed16-October-2020].
I. Segment.io. Set up a custom domain proxy for analytics.js -_ segment documen-tation, 2020.https://segment.com/docs/connections/sources/catalog/libraries/website/javascript/custom-proxy/.
P. Snyder, A. Vastel, and B. Livshits. Who filters the filters: Understanding thegrowth, usefulness and efficiency of crowdsourced ad blocking. InProceedings oftheACMonMeasurementandAnalysisofComputingSystems, volume 4, New York,NY, USA, June 2020. Association for Computing Machinery.44.
Statista, Inc. • u.s. ad blocking cost 2020 | statista.https://www.statista.com/statistics/454473/ad-blocking-cost-usa/. [Online; accessed 22-January-2021].
G. Storey, D. Reisman, J. Mayer, and A. Narayanan. The future of ad blocking: Ananalytical framework and new techniques.arXiv preprint arXiv:1705.08568, 2017.
F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and D. Boneh. Ad-versarial: Defeatingperceptual ad-blocking.arXiv preprint arXiv:1811.03194, 2018.
P. Vadrevu and R. Perdisci. What you see is not what you get: Discovering andtracking social engineering attack campaigns. InProceedings of the Internet Mea-surement Conference, pages 308–321, 2019.
B.VanderSloot, S.Sprecher, andJ.A.Halderman. Beyondacceptableadvertisement:Better understanding blocking extensions. 2019.
W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster. Webranz: webpage randomization for better advertisement delivery and web-bot prevention. InProceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-tions of Software Engineering, pages 205–216, 2016.
Wikipedia contributors. Tf–idf — Wikipedia, the free encyclopedia.https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf oldid=1000484545, 2021.
C. E. Wills and D. C. Uzunoglu. What ad blockers are (and are not) doing. In2016Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),pages 72–77. IEEE, 2016.
G. K. Zipf.Human behavior and the principle of least effort: An introduction tohuman ecology. Ravenio Books, 2016.ributors. Easylist - overview.https://easylist.to/, 2020. [Online;accessed 16-October-2020].
European Commission.2018 reform of EU data protection rules.40.
K. Garimella, O. Kostakis, and M. Mathioudakis. Ad-blocking: A study on per-formance, privacy and counter-measures. InProceedings of the 2017 ACM on WebScience Conference, pages 259–262, 2017.
A. Gervais, A. Filios, V. Lenders, and S. Capkun. Quantifying web adblocker pri-vacy. InEuropean Symposium on Research in Computer Security, pages 21–42.Springer, 2017.
Google. Adguard adblocker - chrome web store.https://chrome.google.com/webstore/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg. [On-line; accessed 20-January-2021].
Google. ublock origin - chrome web store.https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm. [Online; accessed29-January-2021].
Google. Public dns | google developers.https://developers.google.com/speed/public-dns, 2020. [Online; accessed 16-October-2020].
D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An automated approach forcomplementing ad blockers’blacklists.Proceedings on Privacy Enhancing Tech-nologies, 2015(2):282–298, 2015.
S. S. Hashmi, M. Ikram, and M. A. Kaafar. A longitudinal analysis of online ad-blocking blacklists. In2019 IEEE 44th LCN Symposium on Emerging Topics inNetworking (LCN Symposium), pages 158–165. IEEE, 2019.
IAB Technology Laboratory. ads.txt - authorized digital sellers - iab tech lab.https://iabtechlab.com/ads-txt/, 2020. [Online; accessed 16-October-2020].
M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishnamurthy. Towardsseamless tracking-free web: Improved detection of trackers via one-class learning.Proceedings on Privacy Enhancing Technologies, 2017(1):79–99, 2017.41.
Internet Archive. Wayback cdx server api - beta.https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server, 2020. [Online; accessed 16-October-2020].
Internet Archive. Wayback machine.http://web.archive.org/, 2020. [Online;accessed 16-October-2020].
Internet Corporation for Assigned Names and Numbers. Temporary specificationfor gtld registration data - icann.https://www.icann.org/resources/pages/gtld-registration-data-specs-en/, 2021. [Online; accessed 3-February-2021].
U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: Retrospective measurement andanalysis of anti-adblock filter lists. InProceedingsofthe2017InternetMeasurementConference, IMC’17, page 171–183, New York, NY, USA, 2017. Association forComputing Machinery.
U. Iqbal, Z. Shafiq, P. Snyder, S. Zhu, Z. Qian, and B. Livshits. Adgraph: Amachine learning approach to automatic and effective adblocking.arXiv preprintarXiv:1805.09155, 41, 2018.
U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq. Adgraph: A graph-based approach to ad and tracker blocking. In2020 IEEE Symposium on Securityand Privacy (SP), pages 763–776. IEEE, 2020.
K. S. Jones. A statistical interpretation of term specificity and its application inretrieval.Journal of documentation, 1972.
A. J. Kaizer and M. Gupta. Towards automatic identification of javascript-orientedmachine-basedtracking. InProceedingsofthe2016ACMonInternationalWorkshopon Security And Privacy Analytics, pages 33–40, 2016.
A. H. Kargaran, M. S. Akhondzadeh, M. R. Heidarpour, M. H. Manshaei, K. Sala-matian, and M. N. Sattary. On detecting hidden third-party web trackers with awide dependency chain graph: A representation learning approach.arXiv preprintarXiv:2004.14826, 2020.42.
Kayce Basques. Network analysis reference.https://developers.google.com/web/tools/chrome-devtools/network/reference, 2020. [Online; accessed 16-October-2020].
V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.Tranco: A research-oriented top sites ranking hardened against manipulation. InPro-ceedings of the 26th Annual Network and Distributed System Security Symposium,NDSS 2019, Feb. 2019.
D. Lee, J. Rowe, C. Ko, and K. Levitt. Detecting and defending against web-serverfingerprinting. In18th Annual Computer Security Applications Conference, 2002.Proceedings., pages 321–330, Dec 2002.
A. Mathur, J. Vitak, A. Narayanan, and M. Chetty. Characterizing the use of browser-based blocking extensions to prevent online tracking. InFourteenth Symposium onUsable Privacy and Security (fSOUPSg2018), pages 103–116, 2018.
Mozilla and individual contributors. dns - mozilla | mdn.https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/dns, 2020. [Online;accessed 04-October-2020].
Mozilla Foundation. Public suffix list.https://publicsuffix.org/, 2020. [Online;accessed 16-October-2020].
M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting anti ad-blockers in the wild.Proceedings on Privacy Enhancing Technologies, 2017(3):130–146, 2017.
M. H. Mughees, Z. Qian, Z. Shafiq, K. Dash, and P. Hui. A first look at ad-blockdetection: A new arms race on the web.arXiv preprint arXiv:1605.05841, 2016.
A. Nappa, R. F. Munir, I. K. Tanoli, C. Kreibich, and J. Caballero. Revprobe: De-tecting silent reverse proxies in malicious server infrastructures. InProceedings ofthe 32nd Annual Conference on Computer Security Applications, ACSAC ’16, page101–112, New York, NY, USA, 2016. Association for Computing Machinery.43.
NetApplications. Browser market share.https://netmarketshare.com/, 2020.
R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar, J. E.Powles, E. De Cristofaro, H. Haddadi, and S. J. Murdoch. Adblocking and counterblocking: A slice of the arms race. In6thfUSENIXgWorkshop on Free and OpenCommunications on the Internet (fFOCIg16), 2016.
Peter Lowe. Blocking with ad server and tracking server hostnames.https://pgl.yoyo.org/adservers/index.php, 2020. [Online; accessed 16-October-2020].
Romain Cointepas, NextDNS Inc. Cname cloaking, the dangerous dis-guise of third-party trackers | by romain cointepas | nextdns | medium.https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a, 2020. [Online; accessed 16-October-2020].
M. Ruef. httprecon project - advanced http fingerprinting.https://www.computec.ch/projekte/httprecon/, 2020. [Online; accessed 16-October-2020].
N. Savchenko. Github - dataunlocker_save-analytics-from-content-blockers_ aproxy back end for google tag manager google analytics, 2020.https://github.com/dataunlocker/save-analytics-from-content-blockers.
Sectigo Limited. crt.sh | certificate search.https://crt.sh/, 2020. [Online; accessed16-October-2020].
I. Segment.io. Set up a custom domain proxy for analytics.js -_ segment documen-tation, 2020.https://segment.com/docs/connections/sources/catalog/libraries/website/javascript/custom-proxy/.
P. Snyder, A. Vastel, and B. Livshits. Who filters the filters: Understanding thegrowth, usefulness and efficiency of crowdsourced ad blocking. InProceedings oftheACMonMeasurementandAnalysisofComputingSystems, volume 4, New York,NY, USA, June 2020. Association for Computing Machinery.44.
Statista, Inc. • u.s. ad blocking cost 2020 | statista.https://www.statista.com/statistics/454473/ad-blocking-cost-usa/. [Online; accessed 22-January-2021].
G. Storey, D. Reisman, J. Mayer, and A. Narayanan. The future of ad blocking: Ananalytical framework and new techniques.arXiv preprint arXiv:1705.08568, 2017.
F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and D. Boneh. Ad-versarial: Defeatingperceptual ad-blocking.arXiv preprint arXiv:1811.03194, 2018.
P. Vadrevu and R. Perdisci. What you see is not what you get: Discovering andtracking social engineering attack campaigns. InProceedings of the Internet Mea-surement Conference, pages 308–321, 2019.
B.VanderSloot, S.Sprecher, andJ.A.Halderman. Beyondacceptableadvertisement:Better understanding blocking extensions. 2019.
W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster. Webranz: webpage randomization for better advertisement delivery and web-bot prevention. InProceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-tions of Software Engineering, pages 205–216, 2016.
Wikipedia contributors. Tf–idf — Wikipedia, the free encyclopedia.https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf oldid=1000484545, 2021.
C. E. Wills and D. C. Uzunoglu. What ad blockers are (and are not) doing. In2016Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),pages 72–77. IEEE, 2016.
G. K. Zipf.Human behavior and the principle of least effort: An introduction tohuman ecology. Ravenio Books, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77274-
dc.description.abstract廣告攔截器非常仰賴過濾列表來阻擋廣告以及追蹤域名。相關文獻有觀察到廣告商透過註冊「規避域名」,即新的域名但與被過濾的域名有相同功能,來規避過濾列表。但是,由於偵測規避域名的困難性,並沒有相關文獻完整的研究它的普遍性,以及所帶來的影響。因此,我們提出了一個啟發式的方法來找到規避域名,並完整分析它們。我們觀察到廣告域名與其規避域名的擁有者相同,且會有相似的功能性,因此會留下一些可以被連結的足跡。精確而言,我們的方法使用 DNS、TLS 證書、伺服器回應以及 URL 路徑來偵測規避域名。我們也要求規避域名必須要在原廣告域名之後才被加入過濾列表,以降低錯誤判別率。我們在 15,000 個網站中找到 1,569 個規避域名,其中有 339 個已經被過濾而 1,230 尚未被過濾。我們從 1,230 未被過濾的域名中,隨機挑選 293 個進一步進行人工分析,其中有 219 的確是廣告域名。此外,規避域名平均可以存活 356 天,比一般的廣告域名還多了 19 天。透過質化分析,我們對廣告商如何創造、產生規避域名並更新網站,提出了一個分類法。其中我們認為用第一方網站的子域名來代理廣告內容是危險的,因為他濫用了使用者對於第一方網站的信任。藉由了解規避域名,我們希望可以提昇廣告商規避過濾列表的難度。我們的方法亦可以用來創造規避域名資料庫,讓後續的學者可以基於該資料庫進行更多的研究。zh_TW
dc.description.abstractAd-blockers heavily rely on filter lists to block advertising and tracking domains. Prior work has observed that advertisers register and switch to evading domains---new domains that serve the same purpose as the blocked ones---to circumvent domain-based filters. However, no study has thoroughly investigated the prevalence and impact of evading domains, mainly owing to the difficulty of identifying them. This work proposes heuristics to identify evading domains and analyzes them comprehensively. Our heuristics are based on the observation that an ad domain and its evading domain share the same owner and have similar functionality, and thus may leave linkable traces in their configurations. Specifically, we leverage DNS records, TLS certificates, server responses, and URL paths to associate ad domains with their evading domains. We also require that the evading domain be encountered and blocked chronologically after its original ad domain to reduce false positives. On the 15K websites we crawled, we found 1,569 unique evading domains, with 339 of them blocked and 1,230 not blocked. We randomly selected 293 of the 1,230 non-blocked evading domains and confirmed that 219 are ad domains via manual inspection.Moreover, evading domains survive for an average of 356 days, 19 days longer than ad domains without evasion behaviors. Additionally, based on our qualitative analysis, we presented a taxonomy of techniques used to create evading domains, generate domain names, and update first-party websites. The use of first-party subdomains to proxy ads is hazardous, as it abuses users' trust on the first-party website. By improving the understanding of evading domains, we hope to raise the bar for advertisers to bypass filter lists. Our method can also be used to create a large evading-domain dataset, upon which more research can be performed and evaluated.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:53:44Z (GMT). No. of bitstreams: 1
U0001-2601202117465100.pdf: 1191267 bytes, checksum: d3b499ec86653289e257a99b86b3e1ef (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
Acknowledgements iii
摘要 iv
Abstract v
1 Introduction 1
2 Methodology 5
2.1 Identification of same-owner domains 6
2.1.1 DNS records 6
2.1.2 TLS certificates 7
2.1.3 Server responses 7
2.2 Functionality similarity 8
2.3 Timeline constraints 9
2.4 Analysis Methodology 9
2.4.1 Reaction time and additional survival time 9
2.4.2 Request initiators 10
2.5 Data Collection 11
2.5.1 Domain dataset 11
2.5.2 Ad-domain dataset 12
2.5.3 DNS records 13
2.5.4 Server responses 13
2.5.5 TLS certificates 13
3 Result 15
3.1 Evading domains in the wild 15
3.1.1 Reaction time 17
3.1.2 Additional survival time 17
3.1.3 Additional survival time on higher- and lower-ranked sites 18
3.2 Evading Domain Common Patterns 18
3.2.1 Changing subdomain names 18
3.2.2 CNAME cloaking 20
3.2.3 Using first-party subdomains 21
3.2.4 CDN-based domains 22
3.3 Other Findings 22
3.3.1 Entities 22
3.3.2 Chains of evading domains 23
3.3.3 Naming conventions for evading domains 23
3.3.4 How first-party websites switch to using evading domains 24
3.3.5 Failed evasion attempts due to blocked ancestors 25
4 Discussion 27
4.1 Other sources of information 27
4.2 Limitations 29
4.2.1 Encountered time 29
4.2.2 CDN and web hosting services 29
4.2.3 URL path similarity 30
4.2.4 Request initiator 30
4.2.5 Ground truth 30
4.3 Recommendations 31
5 Related Work 32
5.1 Adblocker enhancement and evaluation 32
5.2 Adblocker circumvention 33
6 Conclusion 35
A Appendix 36
A.1 URL similarity parameter selection 36
A.2 Server response parameter selection 37
Bibliography 39
dc.language.isoen
dc.subject追蹤服務商zh_TW
dc.subject廣告zh_TW
dc.subject廣告攔截器zh_TW
dc.subject規避廣告攔截器zh_TW
dc.subject過濾清單zh_TW
dc.subjectAd-block circumventionen
dc.subjectTrackersen
dc.subjectFilter listsen
dc.subjectAd-blockersen
dc.subjectAdvertisementsen
dc.title利用網域名稱變換規避廣告攔截器之方法分析zh_TW
dc.titleA Comprehensive Analysis of Evading Domains in Ad-block Circumventionen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭欣明(Shin-Ming Cheng),黃俊穎(Chun-Ying Huang)
dc.subject.keyword廣告,廣告攔截器,規避廣告攔截器,過濾清單,追蹤服務商,zh_TW
dc.subject.keywordAdvertisements,Ad-blockers,Ad-block circumvention,Filter lists,Trackers,en
dc.relation.page45
dc.identifier.doi10.6342/NTU202100187
dc.rights.note未授權
dc.date.accepted2021-02-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2601202117465100.pdf
  未授權公開取用
1.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved