請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Yu-Fan Yang | en |
| dc.contributor.author | 楊寓帆 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:53:10Z | - |
| dc.date.available | 2021-07-10T21:53:10Z | - |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | [1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).1.
[2] P. Avouris, Nano lett. 10, 4285 (2010). [3] M. C. Lemme, T. J. Echtermeyer, M. Baus, H. Kurz, IEEE Electron Device Lett. 28, 282 (2007). [4] L. A. Falkovsky, J. Phys.: Conf. Ser. 129, 012004 (2008). [5] U. Stöberl, U. Wurstbauer, W. Wegscheider, D. Weiss, J. Eroms, Appl. Phys. Lett. 93, 051906 (2008). [6] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010). [7] C. T. Le, D. J. Clark, F. Ullah, V. Senthilkumar, J. I. Jang, Y. Sim, M.‐J. Seong, K.‐H. Chung, H. Park, Y. S. Kim, Ann. Phys. 528, 551 (2016). [8] Z. Sun, A. Martinez, F. Wang, Nat. Photonics 10, 227 (2014). [9] V. Podzorov, M. E. Gershenson, Ch. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 84, 3301 (2014). [10] H. C. P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad, T. Taniguchi, K. Watanabe, E. Tutuc, S. K. Banerjee, Acs Nano 9, 10402 (2015). [11] C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, P. Kim, Nat. Nanotechnol. 9, 676 (2014). [12] Z. X. Gan, L. Z. Liu1, H. Y. Wu, Y. L. Hao, Y. Shan, X. L. Wu1, Paul K. Chu, Appl. Phys. Lett. 106, 233113 (2015). [13] B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare, A. K. Sood, Phys. Rev. B 85, 161403 (2012). [14] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010). [15] M. Amani, R. A. Burke, X. Ji, P. Zhao, D. H. Lien, P. Taheri, G. H. Ahn, D. Kiriya, J. W. Ager, E. Yablonovitch, J. Kong, M. Dubey, A. Javey, ACS Nano 10, 6535 (2016). [16] H. P. Komsa, A. V. Krasheninnikov, Phys. Rev. B 86, 241201 (2012). [17] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006). [18] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, Nature 474, 64 (2011). [19] K. F. Mak, F. H. Da Hornada, K. He , J. Deslippe, N. Petrone, J. Hone, J. Shan, S. G. Louie , T. F. Heinz , Phys. Rev. Lett. 112, 207401 (2014). [20] A. Marini and F. J. García de Abajo, Phys. Rev. Lett. 116, 217401 (2016). [21] Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, ACS Nano 4, 803 (2010). [22] T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, J. Wang, Phys. Rev. Lett. 108, 167401 (2012). [23] Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, S. C. Wen, Sci. Rep. 5, 16372 (2015). [24] B. Qiu, X. Zhao, G. Hu,W. Yue , J. Ren, X. Yuan, Nanomaterials 8, 962 (2018). [25] D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z.Sodnik, D. M. Cornwell, Proc. SPIE 89710S (2014). [26] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, Science 273, 1185 (1996). [27] E. J. Reddick, D.O. Olsen, Surg. Endosc. 3,131 (1989). [28] W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990). [29] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, X. Xu, Nature 520, 69 (2015). [30] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi, Nano Lett. 15, 5302 (2015). [31] Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, X. Zhang, Nat. Photonics 9, 733 (2015). [32] H. W. Hu, G. Haider, Y. M. Liao, P. K. Roy, R. Ravindranath, H. T. Chang, C. H. Lu, C. Y. Tseng, T. Y. Lin, W. H. Shih, Y. F. Chen, Adv. Mater. 29, 1703549 (2017). [33] P. K. Roy, G. Haider, T. C. Chou, K. H. Chen, L. C. Chen, Y. F. Chen, C. T. Liang, ACS sensors 4, 406 (2019). [34] Q. F. Liu, B. Cook, M. G. Gong, Y. P. Gong, D. Ewing, M. Casper, A. Stramel, J. D. Wu, ACS Appl. Mater. Interfaces 9, 12728 (2017). [35] S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988). [36] J. L. Zhu, W. H. Li, Y. Sun, J. G. Lu, X. L. Song, C. Y. Chen, Z. Zhang, Y. Su, Appl. Phys. Lett. 106, 191903 (2015). [37] V. S. Letokhov, Sov. J. Exp. Theor. Phys. 26, 835 (1968). [38] A. Yamilov, X. Wu, H. Cao, and A. L. Burin, Opt. Lett. 30, 2430 (2005). [39] S. Mujumdar, M. Ricci, R. Torre, D. S. Wiersma, Phys. Rev. Lett. 93, 053903 (2004). [40] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, R. P. H. Chang, Appl. Phys. Lett. 73, 3656 (1998). [41] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999). [42] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007). [43] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim, Science 320, 1308 (2008). [44] Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, Nature 513, 214 (2014). [45] S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, Sci. Rep. 3, 2657 (2013). [46] T. Cheiwchanchamnangij, W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012). [47] A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012). [48] H. Shi, H. Pan, Y.‐W. Zhang, B. I. Yakobson, Phys. Rev. B 87, 155304 (2013). [49] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan, Nat. Mater. 12, 207 (2013). [50] A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, D. K. Maude, Phys. Rev. B 88, 245403 (2013). [51] J. S.Ross, S.Wu, H.Yu, N. J.Ghimire, A. M.Jones, G.Aivazian, J.Yan, D. G.Mandrus, D.Xiao, W.Yao, X.Xu, Nat. Commun. 4, 1474 (2013). [52] Q. Liu, C. Hu, X. Wang, RSC Adv. 6, 25605 (2016). [53] Z. Gan, L. Liu, H. Wu, Y. Hao, Y. Shan, X. Wu, P. K. Chu, Appl. Phys. Lett. 106, 233113 (2015). [54] D. Gopalakrishnan, D. Damien, M. M. Shaijumon, ACS Nano 8, 5297 (2014). [55] G. Z. Lu, M. J. Wu, T. N. Lin, C. Y. Chang, W. L. Lin, Y. T. Chen, C. F. Hou, H. J. Cheng, T. Y. Lin, J. L. Shen, Y. F. Chen, Small, 1901908 (2019) [56] X. J. Lv, G. W. She, S. X. Zhoua, Y. M. Li, Rsc Advances 3, 21231 (2013). [57] Q. H. Liu, W. J. Xia, Z. J. Wu, J. Huo, D. D. Liu, Q. Wang, S. Y. Wang, Nanotechnology 27, 175402 (2016). [58] M. F. Khan, M. A. Shehzad, M. Z. Iqbal, M. W. Iqbal, G. Nazir, Y. Seob, J. Eom, J. Mater. Chem. C 5, 2337 (2017). [59] W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, Opt. Express 14, 8675. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77261 | - |
| dc.description.abstract | 二維半導體材料的出現與發展帶給了可穿戴式光電裝置在許多應用方面的突破,但基於純二維材料來構成的雷射裝置卻寥寥無幾。在這篇論文中我們展示了二硫化鉬與石墨烯應用在可拉伸性及寬頻譜雷射裝置的潛力。透過石墨烯獨特的機械延展性創造出皺褶結構並結合了摻雜組胺酸的二硫化鉬的光學性質能使得裝置在光激發下不斷地產生受激輻射並放大光訊號而產生寬頻譜雷射。實驗結果展示了此裝置能透過改變二硫化鉬的摻雜量與改變拉伸程度來得到不同強度的雷射訊號。因此純二維材料構成的雷射裝置能對可穿戴式、寬頻譜和更薄的光電應用帶來新的可能性。 | zh_TW |
| dc.description.abstract | The advent and development of 2D materials have brought the breakthrough of widespread applications in wearable optoelectronic devices, while there is still a lack of laser devices based on the integration of all 2D materials. In this study, we have demonstrated the potential of histidine-doped MoS2/graphene metamaterials for stretchable and broadband laser devices. Utilizing the unique mechanical and optical properties of histidine-doped MoS2 and graphene, respectively, we showed that wrinkled structures of histidine-doped MoS2/graphene metamaterials induce stimulated emission under optical excitations, and the radiation of stimulated emission can be amplified by multiple scattering in between the hills and valleys of the wrinkles, leading to broadband lasers. The laser actions of the devices are influenced by doping concentrations of L-histidine and can be tuned by applying external strain. This presented stretchable laser devices based on all 2D metamaterials open new possibilities for future developments of wearable, broadband, and much thinner optoelectronic applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:53:10Z (GMT). No. of bitstreams: 1 ntu-108-R06222058-1.pdf: 3205329 bytes, checksum: a71ccb5ebe0565d30b4cfcd7efee9f20 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Contents iv List of Figures vii Chapter 1 Introduction 1 Chapter 2 Theoretical Background 5 2.1 Photoluminescence (PL) 5 2.2 Random Laser 7 2.2.1 Mechanisms 9 2.2.2 Unique Characteristics 10 2.3 Quantum Confinement Effect 11 2.4 Graphene, 2D material 13 2.4.1 Electronic Properties 14 2.4.2 Optical Properties 15 2.5 Exciton 16 2.6 Histidine-doped MoS2 Nanoflakes 17 Chapter 3 Experimental Details 19 3.1 Random Laser Measurement 19 3.2 Time-Resolved Photoluminescence Measurement 20 3.3 Scanning Electron Microscopy (SEM) 23 3.4 Atomic Force Microscope (AFM) 26 3.5 High Resolution Transmission Electron Microscopy (HRTEM) 28 3.6 X-ray Photoelectron Spectroscopy (XPS) 29 3.7 Material Preparation 31 3.7.1 Synthesis of Histidine-doped MoS2 Nanoflakes 31 3.7.2 Synthesis of CVD Graphene 31 3.7.3 Synthesis of Polydimethylsiloxane (PDMS) 32 Chapter 4 Results and Discussions 33 4.1 Device Fabrication 33 4.2 Results and Discussion 34 4.2.1 XPS Measurement 34 4.2.2 Photoluminescence Properties of Histidine-doped MoS2 36 4.2.3 Histidine-doped MoS2/graphene Nanocomposite 37 4.2.4 Laser Action 41 4.2.5 Doping Dependent 43 4.2.6 Strain Dependent 45 Chapter 5 Conclusion 48 Reference 49 | |
| dc.language.iso | en | |
| dc.subject | 寬頻譜 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 純二維材料 | zh_TW |
| dc.subject | 寬頻譜雷射 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 可拉伸裝置 | zh_TW |
| dc.subject | All 2D Materials | en |
| dc.subject | Molybdenum disulfide(MoS2) | en |
| dc.subject | Broadband Laser | en |
| dc.subject | Graphene | en |
| dc.subject | Stretchable Device | en |
| dc.subject | All 2D Materials | en |
| dc.subject | Molybdenum disulfide(MoS2) | en |
| dc.subject | Broadband Laser | en |
| dc.subject | Graphene | en |
| dc.subject | Stretchable Device | en |
| dc.title | 純二維材料可拉伸與寬頻譜隨機雷射 | zh_TW |
| dc.title | Stretchable and Broadband Random Lasers Based on All Two-Dimensional Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林泰源(Tai-Yuan Lin),沈志霖(Ji-Lin Shen),謝雅萍(Ya-Ping Hsieh) | |
| dc.subject.keyword | 二硫化鉬,寬頻譜雷射,石墨烯,可拉伸裝置,寬頻譜,純二維材料, | zh_TW |
| dc.subject.keyword | Molybdenum disulfide(MoS2),Broadband Laser,Graphene,Stretchable Device,All 2D Materials, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU201903079 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06222058-1.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
