Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉zh_TW
dc.contributor.advisorKen-Tsung Wongen
dc.contributor.author洪懿慈zh_TW
dc.contributor.authorYi-Tzu Hungen
dc.date.accessioned2021-07-10T21:53:01Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. 鄭碩賢。「二代與三代有機發光二極體材料之設計、合成、鑑定及其元件應用」。博士論文,國立臺灣大學化學研究所,2014。https://hdl.handle.net/11296/76t5dd。
2. https://www.apple.com.
3. 彭子軒。「含雙氰基吡啶材料之設計、合成與性質及其在熱激活化延遲螢光有機發光二極體之應用」。碩士論文,國立臺灣大學化學研究所,2018。https://hdl.handle.net/11296/26w638。
4. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. J. Chem. Phys. 1963, 38, 2042.
5. Helfrich, W.; Schneider, W. G., Recombination Radiation in Anthracene Crystals. Phys. Rev. Lett. 1965, 14, 229.
6. Tang, C. W.; VanSlyke, S. A., Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51, 913.
7. Elschner, A.; Bruder, F.; Heuer, H.-W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R., PEDT/PSS for Efficient Hole-Injection in Hybrid Organic Light-Emitting Diodes. Synth. Met. 2000, 111-112, 139.
8. Slyke, S. A. V.; Chen, C. H.; Tang, C. W., Organic Electroluminescent Devices with Improved Stability. Appl. Phys. Lett. 1996, 69, 2160.
9. Son, S.-H.; Jang, J.-G.; Jeon, S.-Y.; Yoon, S.-H.; Lee, J.-C.; Kim, K.-K. Electroluminescent Devices with Low Work Function Anodes. 2004.
10. Kim, S.-Y.; Jeong, W.-I.; Mayr, C.; Park, Y.-S.; Kim, K.-H.; Lee, J.-H.; Moon, C.-K.; Brütting, W.; Kim, J.-J., Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. Adv. Funct. Mater. 2013, 23, 3896.
11. Herman, B.; Frohlich, V. E. C.; Lakowicz, J. R.; Murphy, D. B.; Spring, K. R.; Davidson, M. W. Basic Concepts in Fluorescence. Retrieved June 31, 2019, from https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/
fluorescence/fluorescenceintro/.
12. Jabłoński, A., Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839.
13. Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Nature 1998, 395, 151.
14. Goudarzi, H.; Keivanidis, P. E., Triplet–Triplet Annihilation-Induced Up-Converted Delayed Luminescence in Solid-State Organic Composites: Monitoring Low-Energy Photon Up-Conversion at Low Temperatures. J. Phys. Chem. C 2014, 118, 14256.
15. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234.
16. Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
17. Parker, C. A.; Hatchard, C. G., Triplet-Singlet Emission in Fluid Solutions. Phosphorescence of Eosin. Trans. Faraday Soc. 1961, 57, 1894.
18. Blasse, G.; McMillin, D. R., On the Luminescence of Bis(triphenylphosphine) Phenanthroline Copper (I). Chem. Phys. Lett. 1980, 70, 1.
19. Berberan-Santos, M. N.; Garcia, J. M. M., Unusually Strong Delayed Fluorescence of C70. J. Am. Chem. Soc. 1996, 118, 9391.
20. Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C., Thermally Activated Delayed Fluorescence from Sn4+–Porphyrin Complexes and Their Application to Organic Light Emitting Diodes — A Novel Mechanism for Electroluminescence. Adv. Mater. 2009, 21, 4802.
21. Li, J.; Nakagawa, T.; Zhang, Q.; Nomura, H.; Miyazaki, H.; Adachi, C., Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative. Adv. Mater. 2013, 25, 3319.
22. Wang, H.; Xie, L.; Peng, Q.; Meng, L.; Wang, Y.; Yi, Y.; Wang, P., Novel Thermally Activated Delayed Fluorescence Materials–Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs. Adv. Mater. 2014, 26, 5198.
23. Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C., Efficient Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. Nat. Photon. 2014, 8, 326.
24. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C., Efficient Up-Conversion of Triplet Excitons into a Singlet State and its Application for Organic Light Emitting Diodes. Appl. Phys. Lett. 2011, 98, 083302.
25. Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C., Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. J. Am. Chem. Soc. 2012, 134, 14706.
26. Lin, T.-A.; Chatterjee, T.; Tsai, W.-L.; Lee, W.-K.; Wu, M.-J.; Jiao, M.; Pan, K.-C.; Yi, C.-L.; Chung, C.-L.; Wong, K.-T.; Wu, C.-C., Sky‐Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine‐Triazine Hybrid. Adv. Mater. 2016, 28, 6976.
27. Pan, K.-C.; Li, S.-W.; Ho, Y.-Y.; Shiu, Y.-J.; Tsai, W.-L.; Jiao, M.; Lee, W.-K.; Wu, C.-C.; Chung, C.-L.; Chatterjee, T.; Li, Y.-S.; Wong, K.-T.; Hu, H.-C.; Chen, C.-C.; Lee, M.-T., Efficient and Tunable Thermally Activated Delayed Fluorescence Emitters Having Orientation‐Adjustable CN‐Substituted Pyridine and Pyrimidine Acceptor Units. Adv. Funct. Mater. 2016, 26, 7560.
28. Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H., A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. J. Am. Chem. Soc. 2016, 138, 628.
29. Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y., Highly Efficient Near‐Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene‐Based Charge‐Transfer Compound. Angew. Chem. Int. Ed. 2015, 54, 13068.
30. Zeng, W.; Lai, H.-Y.; Lee, W.-K.; Jiao, M.; Shiu, Y.-J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K.-T.; Wu, C.-C.; Yang, C., Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8‐Naphthalimide‐Acridine Hybrids. Adv. Mater. 2017, 30, 1704961.
31. Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W., Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Adv. Mater. 2014, 26, 7931.
32. Adachi, C., Third-Generation Organic Electroluminescence Materials. Jpn. J. Appl. Phys. 2014, 53 060101.
33. Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915.
34. Liang, X.; Tu, Z.-L.; Zheng, Y.-X., Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chem. Eur. J. 2019, 25, 5623.
35. Zou, Y.; Gong, S.; Xie, G.; Yang, C., Design Strategy for Solution-Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Light-Emitting Diodes. Adv. Optical Mater. 2018, 6, 1800568.
36. Méhes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C., Enhanced Electroluminescence Efficiency in a Spiro-Acridine Derivative through Thermally Activated Delayed Fluorescence. Angew. Chem. Int. Ed. 2012, 124, 11473.
37. Lee, S. Y.; Yasuda, T.; Park, I. S.; Adachi, C., X-shaped Benzoylbenzophenone Derivatives with Crossed Donors and Acceptors for Highly Efficient Thermally Activated Delayed Fluorescence. Dalton Trans. 2015, 44, 8356.
38. Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T., Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777.
39. Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Voorhis, T. V.; Baldo, M. A.; Swager, T. M., Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes. J. Am. Chem. Soc. 2015, 137, 11908.
40. Tsujimoto, H.; Ha, D.-G.; Markopoulos, G.; Chae, H. S.; Baldo, M. A.; Swager, T. M., Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer. J. Am. Chem. Soc. 2017, 139, 4894.
41. Shizu, K.; Noda, H.; Tanaka, H.; Taneda, M.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C., Highly Efficient Blue Electroluminescence Using Delayed-Fluorescence Emitters with Large Overlap Density between Luminescent and Ground States. J. Phys. Chem. C 2015, 119, 26283.
42. Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C., Highly Efficient Blue Electroluminescence Based on Thermally Activated Delayed Fluorescence. Nat. Mater. 2015, 14, 330.
43. Sarma, M.; Wong, K.-T., Exciplex: An Intermolecular Charge-Transfer Approach for TADF. ACS Appl. Mater. Interfaces 2018, 10, 19279.
44. Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Chen, M.; Liu, W.; Zhang, X.-H.; Lee, C.-S., Nearly 100% Triplet Harvesting in Conventional Fluorescent Dopant-Based Organic Light-Emitting Devices Through Energy Transfer from Exciplex. Adv. Mater. 2015, 27, 2025.
45. Wu, S.-F.; Li, S.-H.; Wang, Y.-K.; Huang, C.-C.; Sun, Q.; Liang, J.-J.; Liao, L.-S.; Fung, M.-K., White Organic LED with a Luminous Efficacy Exceeding 100 lm W-1 without Light Out-Coupling Enhancement Techniques. Adv. Funct. Mater. 2017, 27, 1701314.
46. Hung, W.-Y.; Fang, G.-C.; Chang, Y.-C.; Kuo, T.-Y.; Chou, P.-T.; Lin, S.-W.; Wong, K.-T., Highly Efficient Bilayer Interface Exciplex For Yellow Organic Light-Emitting Diode. ACS Appl. Mater. Interfaces 2013, 5, 6826.
47. Hung, W.-Y.; Fang, G.-C.; Lin, S.-W.; Cheng, S.-H.; Wong, K.-T.; Kuo, T.-Y.; Chou, P.-T., The First Tandem, All-exciplex-based WOLED. Sci. Rep. 2014, 4, 5161.
48. Seino, Y.; Inomata, S.; Sasabe, H.; Pu, Y.-J.; Kido, J., High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W-1. Adv. Mater. 2016, 28, 2638-2643.
49. Chen, C.; Liu, Y.-f.; Chen, Z.; Wang, H.-r.; Wei, M.-z.; Bao, C.; Zhang, G.; Gao, Y.-H.; Liu, C.-L.; Jiang, W.-L.; Duan, Y., High Efficiency Warm White Phosphorescent Organic Light Emitting Devices based on Blue Light Emission from a Bipolar Mixed-host. Org. Electron. 2017, 45, 273.
50. Kim, J.-M.; Lee, C.-H.; Kim, J.-J., Mobility Balance in the Light-Emitting Layer Governs the Polaron Accumulation and Operational Stability of Organic Light-Emitting Diodes. Appl. Phys. Lett. 2017, 111, 203301.
51. Wu, Z.; Yu, L.; Zhao, F.; Qiao, X.; Chen, J.; Ni, F.; Yang, C.; Ahamad, T.; Alshehri, S. M.; Ma, D., Precise Exciton Allocation for Highly Efficient White Organic Light-Emitting Diodes with Low Efficiency Roll-Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Adv. Optical Mater. 2017, 5, 1700415.
52. Lee, J.-H.; Lee, S.; Yoo, S.-J.; Kim, K.-H.; Kim, J.-J., Langevin and Trap-Assisted Recombination in Phosphorescent Organic Light Emitting Diodes. Adv. Funct. Mater. 2014, 24, 4681.
53. Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.; Ou, X.-M.; Zhang, X.-H., Prediction and Design of Efficient Exciplex Emitters for High-Efficiency, Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes. Adv. Mater. 2015, 27, 2378.
54. Mamada, M.; Tian, G.; Nakanotani, H.; Su, J.; Adachi, C., The Importance of Excited-State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angew. Chem. Int. Ed. 2018, 57, 12380.
55. Chapran, M.; Pander, P.; Vasylieva, M.; Wiosna-Salyga, G.; Ulanski, J.; Dias, F. B.; Data, P., Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. ACS Appl. Mater. Interfaces 2019, 11, 13460.
56. Wong, K.-T., Highly Efficient Organic Light-Emitting Diodes Based on an Exciplex. In Newsletter, SPIE., 2016.
57. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of Doped Organic Thin Films. J. Appl. Phys. 1989, 65, 3610.
58. Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.; Adachi, C., A Six-Carbazole-Decorated Cyclophosphazene as a Host with High Triplet Energy to Realize Efficient Delayed-Fluorescence OLEDs. Mater. Horiz. 2014, 1, 264.
59. Chaskar, A.; Chen, H.-F.; Wong, K.-T., Bipolar Host Materials: A Chemical Approach for Highly Efficient Electrophosphorescent Devices. Adv. Mater. 2011, 23, 3876.
60. Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X., Recent Progress in Metal–Organic Complexes for Optoelectronic Applications. Chem. Soc. Rev. 2014, 43, 3259.
61. Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Efficient, Deep-Blue Organic Electrophosphorescence by Guest Charge Trapping. Appl. Phys. Lett. 2003, 83, 3818.
62. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E., Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices. Chem. Mater. 2004, 16, 4743.
63. Cui, L.-S.; Xie, Y.-M.; Wang, Y.-K.; Zhong, C.; Deng, Y.-L.; Liu, X.-Y.; Jiang, Z.-Q.; Liao, L.-S., Pure Hydrocarbon Hosts for ≈100% Exciton Harvesting in Both Phosphorescent and Fluorescent Light-Emitting Devices. Adv. Mater. 2015, 27, 4213.
64. Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C., Organic Light-Emitting Diodes Employing Efficient Reverse Intersystem Crossing for Triplet-to-Singlet State Conversion. Nat. Photon. 2012, 6, 253.
65. Bergmann, L.; Hedley, G. J.; Baumann, T.; Bräse, S.; Samuel, I. D. W., Direct Observation of Intersystem Crossing in a Thermally Activated Delayed Fluorescence Copper Complex in the Solid State. Sci. Adv. 2016, 2, e1500889.
66. Salazar, F. A.; Fedorov, A.; Berberan-Santos, M. N., A Study of Thermally Activated Delayed Fluorescence in C60. Chem. Phys. Lett. 1997, 271, 361.
67. Fister, J. C.; Rank, D.; Harris, J. M., Delayed Fluorescence Optical Thermometry. Anal. Chem. 1995, 67, 4269.
68. Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C., Efficient Green Thermally Activated Delayed Fluorescence (TADF) from a Phenoxazine–Triphenyltriazine (PXZ–TRZ) Derivative. Chem. Commun. 2012, 48, 11392.
69. Serevičius, T.; Nakagawa, T.; Kuo, M.-C.; Cheng, S.-H.; Wong, K.-T.; Chang, C.-H.; Kwong, R. C.; Xiae, S.; Adachi, C., Enhanced Electroluminescence Based on Thermally Activated Delayed Fluorescence from a Carbazole–Triazine Derivative. Phys. Chem. Chem. Phys. 2013, 15, 15850.
70. Klenkler, R. A.; Aziz, H.; Tran, A.; Popovic, Z. D.; Xu, G., High Electron Mobility Triazine for Lower Driving Voltage and Higher Efficiency Organic Light Emitting Devices. Org. Electron. 2008, 9, 285.
71. Wex, B.; Kaafarani, B. R., Perspective on Carbazole-Based Organic Compounds as Emitters and Hosts in TADF Applications. J. Mater. Chem. C 2017, 5, 8622.
72. Blouin, N.; Leclerc, M., Poly(2,7-carbazole)s: Structure-Property Relationships. Acc. Chem. Res. 2008, 41, 1110.
73. Chang, C.-H.; Kuo, M.-C.; Lin, W.-C.; Chen, Y.-T.; Wong, K.-T.; Chou, S.-H.; Mondal, E.; Kwong, R. C.; Xia, S.; Nakagawa, T.; Adachi, C., A Dicarbazole–Triazine Hybrid Bipolar Host Material for Highly Efficient Green Phosphorescent OLEDs. J. Mater. Chem. 2012, 22, 3832.
74. Tsai, M.-H.; Lin, H.-W.; Su, H.-C.; Ke, T.-H.; Wu, C.-c.; Fang, F.-C.; Liao, Y.-L.; Wong, K.-T.; Wu, C.-I., Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6‐Bis(triphenylsilyl)carbazole as the Host Material. Adv. Mater. 2006, 18, 1216.
75. Tao, Y.; Wang, Q.; Yang, C.; Zhong, C.; Qin, J.; Ma, D., Multifunctional Triphenylamine/Oxadiazole Hybrid as Host and Exciton-Blocking Material: High Efficiency Green Phosphorescent OLEDs Using Easily Available and Common Materials. Adv. Funct. Mater. 2010, 20, 2923.
76. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C., Dual Intramolecular Charge-Transfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative. J. Phys. Chem. C 2014, 118, 15985.
77. Lin, J.-A.; Li, S.-W.; Liu, Z.-Y.; Chen, D.-G.; Huang, C.-Y.; Wei, Y.-C.; Chen, Y.-Y.; Tsai, Z.-H.; Lo, C.-Y.; Hung, W.-Y.; Wong, K.-T.; Chou, P.-T., Bending-Type Electron Donor–Donor–Acceptor Triad: Dual Excited-State Charge-Transfer Coupled Structural Relaxation. Chem. Mater. 2019.
78. He, J.; Liu, H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Novel 2,7-Linked Carbazole Trimers as Model Compounds for Conjugated Carbazole Polymers. J. Phys. Chem. C 2009, 113, 6761.
79. Linton, K. E.; Fisher, A. L.; Pearson, C.; Fox, M. A.; Palsson, L.-O.; Bryce, M. R.; Petty, M. C., Colour Tuning of Blue Electroluminescence Using Bipolar Carbazole–Oxadiazole Molecules in Single-Active-Layer Organic Light Emitting Devices (OLEDs). J. Mater. Chem. 2012, 22, 11816.
80. Xia, C.; Advincula, R. C., Surface Grafting of Conjugated Polymers onto Self-assembled Monolayer Modified Conducting Substrates by Electrochemistry. Chem. Mater. 2001, 13, 1682.
81. Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J.-F.; Leclerc, M., Electrochemical, Conductive, and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers. Macromolecules 2002, 35, 2122.
82. Sonntag, M.; Strohriegl, P., Novel 2,7-Linked Carbazole Trimers as Model Compounds for Conjugated Carbazole Polymers. Chem. Mater. 2004, 16, 4736.
83. Hosokai, T.; Nakanotani, H.; Santou, S.; Noda, H.; Nakayama, Y.; Adachi, C., TADF Activation by Solvent Freezing: The Role of Nonradiative Triplet Decay and Spin-orbit Coupling in Carbazole Benzonitrile Derivatives. Synth. Met. 2019, 252, 62.
84. Hosokai, T.; Matsuzaki, H.; Nakanotani, H.; Tokumaru, K.; Tsutsui, T.; Furube, A.; Nasu, K.; Nomura, H.; Yahiro, M.; Adachi, C., Evidence and Mechanism of Efficient Thermally Activated Delayed Fluorescence Promoted by Delocalized Excited States. Sci. Adv. 2017, 3, e1603282.
85. Leem, D.-S.; Park, H.-D.; Kang, J.-W.; Lee, J.-H.; Kim, J. W.; Kim, J.-J., Low Driving Voltage and High Stability Organic Light-Emitting Diodes with Rhenium Oxide-Doped Hole Transporting Layer. Appl. Phys. Lett. 2007, 91, 011113.
86. Yoo, S.-J.; Chang, J.-H.; Lee, J.-H.; Moon, C.-K.; Wu, C.-I.; Kim, J.-J., Formation of Perfect Ohmic Contact at Indium Tin Oxide/ N,N'-Di(Naphthalene-1-yl)-N,N'-Diphenyl-Benzidine Interface Using ReO3. Sci. Rep. 2014, 4, 3902.
87. Su, S.-J.; Cai, C.; Kido, J., RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations. Chem. Mater. 2011, 23, 274.
88. Wu, J.-Y.; Chen, S.-A., Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing. ACS Appl. Mater. Interfaces 2018, 10, 4851.
89. Song, W.; Lee, J. Y., Design Strategy of Exciplex Host for Extended Operational Lifetime. Org. Electron. 2017, 48, 285.
90. Zhang, D.; Cai, M.; Zhang, Y.; Bin, Z.; Zhang, D.; Duan, L., Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex. ACS Appl. Mater. Interfaces 2016, 8, 3825.
91. Zhang, D.; Song, X.; Cai, M.; Duan, L., Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers. Adv. Mater. 2018, 30, 1705250.
92. He, S.-J.; Wang, D.-K.; Jiang, N.; Tse, J. S.; Lu, Z.-H., Tunable Excitonic Processes at Organic Heterojunctions. Adv. Mater. 2016, 28, 649.
93. Chen, D.; Xie, G.; Cai, X.; Liu, M.; Cao, Y.; Su, S.-J., Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency. Adv. Mater. 2016, 28, 239.
94. Hung, W.-Y.; Chiang, P.-Y.; Lin, S.-W.; Tang, W.-C.; Chen, Y.-T.; Liu, S.-H.; Chou, P.-T.; Hung, Y.-T.; Wong, K.-T., Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor. ACS Appl. Mater. Interfaces 2016, 8, 4811.
95. Nakanotani, H.; Masui, K.; Nishide, J.; Shibata, T.; Adachi, C., Promising Operational Stability of High-Efficiency Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Sci. Rep. 2013, 3, 2127.
96. Jiang, W.; Duan, L.; Qiao, J.; Dong, G.; Zhang, D.; Wang, L.; Qiu, Y., High-Triplet-Energy Tri-Carbazole Derivatives as Host Materials for Efficient Solution-Processed Blue Phosphorescent Devices. J. Mater. Chem. 2011, 21, 4918.
97. Bonesi, S. M.; Erra-Balsells, R., Synthesis and Isolation of Iodocarbazoles. Direct Iodination of Carbazoles by N-Iodosuccinimide and N-Iodosuccinimide-silica Gel System. J. Heterocyclic Chem. 2001, 38, 77.
98. Wei, X.; Li, Z.; Hu, T.; Duan, R.; Liu, J.; Wang, R.; Liu, Y.; Hu, X.; Yi, Y.; Wang, P.; Wang, Y., Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters. Adv. Optical Mater. 2019, 7, 1801767.
99. Bässler, H., Hopping Conduction in Polymers. Int. J. Mod. Phys. B 1994, 8, 847.
100. Gill, W. D., Drift Mobilities in Amorphous Charge‐Transfer Complexes of Trinitrofluorenone and Poly‐n‐vinylcarbazole. J. Appl. Phys. 1972, 43, 5033.
101. Schein, L. B., Comparison of Charge Transport Models in Molecularly Doped Polymers. Philos. Mag. B 1992, 65, 795.
102. Louillat, M.-L.; Patureau, F. W., Toward Polynuclear Ru–Cu Catalytic Dehydrogenative C–N Bond Formation, on the Reactivity of Carbazoles. Org. Lett. 2013, 15, 164.
103. Park, N.; Park, K.; Jang, M.; Lee, S., One-Pot Synthesis of Symmetrical and Unsymmetrical Aryl Sulfides by Pd-Catalyzed Couplings of Aryl Halides and Thioacetates. J. Org. Chem. 2011, 76, 4371.
104. Li, Y.; Xie, G.; Gong, S.; Wu, K.; Yang, C., Dendronized Delayed Fluorescence Emitters for Non-Doped, Solution-Processed Organic Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-Off Simultaneously: Two Parallel Emissive Channels. Chem. Sci. 2016, 7, 5441.
105. Zhao, B.; Zhang, T.; Chu, B.; Li, W.; Su, Z.; Wu, H.; Yan, X.; Jin, F.; Gao, Y.; Liu, C., Highly Efficient Red OLEDs Using DCJTB as the Dopant and Delayed Fluorescent Exciplex as the Host. Sci. Rep. 2015, 5, 10697.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77257-
dc.description.abstract有機光電元件相較於傳統的無機光電元件,具有低成本、製程難度較低、可撓性等優勢,受到學界及業界的高度重視。具有低單重態及三重態能階差的有機材料,因其具有使用100%激子的潛力,近年來成為第三代有機發光二極體 (OLEDs) 的主流。近年來,主要有兩種方法設計具此一性質的有機材料:熱激活化延遲螢光 (thermally activated delayed fluorescence, TADF) 及激發錯合體 (Exciplex)。兩種皆利用分離分子中最高佔據分子軌域 (HOMO) 與最低未佔分子軌域 (LUMO) 來降低單重態及三重態能階差。藉由適當的分子設計與合宜的元件材層,可使整體元件外部效率超過30%,因此成為近期OLED研究領域中的熱門題目。
在本論文中,主要設計與合成一系列以咔唑為核心的有機光電材料,並應用於第三代OLED (TADF OLEDs) 的發光層中作為主體或客體材料,相關的材料性質將一併在本文中分析與討論。各章節內容簡要如下:第一章介紹OLEDs之相關背景知識;第二章以先前發表的分子 (CzT) 做延伸,藉由置換電子予體 (donor) 或改變其拓樸結構,探討對TADF性質和元件表現的影響;第三章以9-苯基咔唑 (CzP) 為核心,藉由改變核心上donor數量與強度、或將donor接在CzP的1號位,又或是引入異核原子於兩核心間,藉此探究對分子特性與元件表現的影響。
zh_TW
dc.description.abstractOrganic optoelectronic devices have attracted intense attention from researchers and companies all over the world for their low cost, ease of production, and mechanical flexibility compared to traditional inorganic optoelectronic devices. The molecules with small singlet and triplet energy gap (ΔEST) are the mainstream of current OLEDs development due to their potential of utilizing 100% excitons. Nowadays, there are two main routes to design small ΔEST organic materials, thermal activated delayed fluorescence (TADF) and exciplex. Both strategies are in an aim to separate distribution of HOMO and LUMO in order to further reduce ΔEST. The external quantum efficiency can be surpassed 30% by utilizing adequate molecules with proper device’s fabrication. Therefore, it has been attractive to both academia and industry.
In this thesis, a series of carbazole-based organic optoelectronic materials utilized in TADF OLEDs as either host or guest materials were designed, synthesized, and characterized. The essence of each chapters are briefly introduced as follows. 1st chapter provides an overview for OLEDs and 2nd chapter extends the previously published molecule (CzT) to investigate the effects on TADF properties and device performance through introducing different electron donors and then changing their topology. In chapter 3, we take 9-phenylcarbazole (CzP) as the core of HTMs. We investigate the effects on molecule properties and device performance by manipulating the strength of donors, connecting the donor to the 1st position of CzP, or introducing hetero-atoms between two CzPs.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:53:01Z (GMT). No. of bitstreams: 1
ntu-108-D01223129-1.pdf: 15963686 bytes, checksum: f00be65a9cd382f7ebb1c972440af2b4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
中文摘要 iv
Abstract vi
目 錄 viii
圖 目 錄 xii
式 圖 目 錄 xix
表 目 錄 xxi
縮寫用語對照表 xxiii
第一章 緒論 1
1.1 引言 1
1.2 有機發光二極體元件結構與原理 3
1.3 電致發光反應機構與有機發光二極體的發展 7
1.4 熱激活化延遲螢光 (Thermally Activated Delayed Fluorescence, TADF) 11
1.5 激發錯合體有機發光二極體 (Exciplex OLED) 16
1.6 主客體發光系統與能量轉移機制 21
1.7 論文架構 25
第二章 CzT衍生物之分子設計、合成、性質分析與元件應用 26
前言 26
分子設計 29
2.1 置換電子予體 (electron donor) 對分子特性的影響 32
2.1.1 分子合成 32
2.1.2 性質研究 38
2.1.2.1 光物理性質 38
2.1.2.2 電化學性質 41
2.1.2.3 熱性質 44
2.2 改變拓璞 (topology) 結構對分子特性與元件表現的影響 47
2.2.1 分子合成 47
2.2.2 性質研究 49
2.2.2.1 光物理性質 49
2.2.2.2 電化學性質 54
2.2.2.3 熱性質 56
2.2.3 有機發光二極體元件應用 58
2.3 結論 67
第三章 以9-苯基咔唑 (CzP) 為核心之電子予體材料設計、合成、性質分析與活化複體有機發光二極體之應用 68
前言 68
分子設計 73
3.1 改變CzP核心上電子予體的數量與強度對分子特性和元件表現的影響 75
3.1.1 分子合成 75
3.1.2 性質研究 79
3.1.2.1 光物理性質 79
3.1.2.2 電化學性質分析 85
3.1.2.3 熱性質分析 87
3.1.3 有機發光二極體元件應用 89
3.2 改變CzP核心平面性探討對分子特性和元件表現的影響 95
3.2.1 分子合成 95
3.2.2 性質研究 97
3.2.2.1 光物理性質分析 97
3.2.2.2 電化學性質分析 100
3.2.2.3 熱性質分析 102
3.2.3 有機發光二極體元件應用 104
3.3 引入異核原子於兩個CzP核心間探究對分子特性和元件表現的影響 110
3.3.1 分子合成 110
3.3.2 性質研究 111
3.3.2.1 光物理性質分析 111
3.3.2.2 電化學性質分析 116
3.3.2.3 熱性質分析 118
3.3.3 有機發光二極體元件應用 119
3.4 結論 129
第四章 實驗部份 132
4.1 一般敘述 132
4.2 實驗步驟與數據 136
4.2.1 合成CzT衍生物 136
4.2.2 合成以CzP為核心之電子予體材料 154
4.3 X-ray單晶繞射數據 167
第五章 參考文獻 193
附錄一 化合物之1H、13C NMR光譜圖 207
附錄二 化合物之TGA、DSC溫度記錄圖 234
-
dc.language.isozh_TW-
dc.subject分子內電荷轉移zh_TW
dc.subject第三代有機發光二極體zh_TW
dc.subject分子間電荷轉移zh_TW
dc.subjectexciplexen
dc.subjectcarbazoleen
dc.subjectOLEDen
dc.subjectTADFen
dc.title具分子內與分子間電荷轉移行為之材料的設計、合成、鑑定與其在有機發光二極體上之應用zh_TW
dc.titleDesigns, Syntheses, Characterizations and Application of Intra- and Intermolecular Charge Transfer Materials for Organic Light Emitting Diodesen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee梁文傑;黃炳綜;洪文誼;張志豪;陳志欣zh_TW
dc.contributor.oralexamcommitteeMan-kit Leung;Ping-Tsung Huang;Wen-Yi Hung;Chih-Hao Chang;Chih-Hsin Chenen
dc.subject.keyword第三代有機發光二極體,分子內電荷轉移,分子間電荷轉移,zh_TW
dc.subject.keywordcarbazole,OLED,exciplex,TADF,en
dc.relation.page252-
dc.identifier.doi10.6342/NTU201901974-
dc.rights.note未授權-
dc.date.accepted2019-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
15.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved