請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑怡 | zh_TW |
| dc.contributor.advisor | Shu-I Lin | en |
| dc.contributor.author | 李宛螢 | zh_TW |
| dc.contributor.author | Wuan-Ying Lee | en |
| dc.date.accessioned | 2021-07-10T21:52:58Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2019-08-22 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 王三太、許秀惠. 2017. 應用嫁接根砧生產設施番茄. 設施蔬果病蟲害管理暨安全生產研討會論文集. 行政院農業委員會農業試驗所. p. 64-75.
朱詠筑、楊藹華、劉依昌、黃圓滿、錢岳. 2016. 不同根砧對小果番茄果實品質之影響. 臺南區農業改良場研究彙報. 68:26-34. 行政院經濟部農委會農糧署. 2017.農業統計年報資料. <http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx>. 柯勇. 2016. 植物生理學. 藝軒圖書. 新北. 臺灣. 徐善德、廖玉琬. 2006. 植物生理學. 偉明圖書有限公司. 臺北. 臺灣. 高德錚. 2017. 液肥配方在設施蔬菜栽培之調配與應用實務. 臺中區農業改良場特刊. 133:189-205. 郭宏遠、何超然. 2010. 台灣番茄市場及品種簡介. 苗栗區農業專訊. 50:11-13. 曾學瑜. 2016. 水分管理對茄砧嫁接‘玉女’番茄植株生長及果實生產之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 趙筱倩、林慧玲. 2010. 高溫處理對‘台農二號’番木瓜果實乙烯生合成之影響. 興大園藝. 34:7-21. 劉依昌、黃瑞彰、蔡孟旅、黃秀文. 2016. 小果番茄設施栽培及健康管理. 臺南區農業改良場技術專刊.164:3-47. 謝明憲、劉依昌、許涵鈞、江汶錦、鍾瑞永. 2010. 小果番茄肥液滴灌管理研究. 臺南區農業改良場研究彙報. 59:45-53. FAO (Food and Agriculture Organization of the United Nations). 2017. FAOStat, production 2017. Available online: <http://www.fao.org/faostat/en/?#data/QC/visualize> Abushita, A.A., E.A. Hebshi, H.G. Daood and P.A. Biacs. 1997. Determination of antioxidant vitamins in tomatoes. Food Chem. 60:207-212. Chaves, M.M., J.P. Maroco and J.S. Pereira. 2003. Understanding plant responses to drought—from genes to the whole plant. Funct. Plant Biol. 30:239-264. Coyago-Cruz, E., M. Corell, A. Moriana, D. Hernanz, A.M. Benitez-Gonzalez, C.M. Stinco and A.J. Melendez-Martinez. 2018. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem. 240:870-884. Davies, W.J. and W. Hartung. 2004. Has extrapolation from biochemistry to crop functioning worked to sustain plant production under water scarcity. Proceeding of the 4th International Crop Science Congress. Published on website <http://www.cropscience.org.au/icsc2004/symposia/1/3/1914_davieswj.htm >. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Biol. 42:55-76. Flexas, J. and H. Medrano. 2002. Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Ann. Bot. 89:183-189. Flores, F.B., P. Sanchez-Bel, M.T. Estañ, M.M. Martinez-Rodriguez, E. Moyano, B. Morales, J.F. Campos, J.O. Garcia-Abellán, M.I. Egea, N. Fernández-Garcia, F. Romojaro and M.C. Bolarín. 2010. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 125:211-217. Jensen, C.R., A. Battilani, F. Plauborg, G. Psarras, K. Chartzoulakis, F. Janowiak, R. Stikic, Z. Jovanovic, G. Li, X. Qi, F. Liu, S.-E. Jacobsen and M.N. Andersen. 2010. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agric. Water Manag. 98:403-413. Johnstone, P., T. Hartz, M. LeStrange, J. Nunez and E.M. Miyao. 2005. Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production. HortScience. 40:1857-1861. Kaiser, W.M. 1987. Effects of water deficit on photosynthetic capacity. Physiol. Plant. 71:142-149. Kang, S. and J. Zhang. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55:2437-2446. Khapte, P., P. Kumar, U. Burman and P. Kumar. 2019. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 248:256-264. Kirda, C., M. Cetin, Y. Dasgan, S. Topcu, H. Kaman and B. Ekici, M.R. Derici and A.I. Ozguven. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 69:191-201. Kumar, P.S., Y. Singh, D. Nangare, K. Bhagat, M. Kumar, P. Taware, A. Kumari and P.S. Minhas. 2015. Influence of growth stage specific water stress on the yield, physico-chemical quality and functional characteristics of tomato grown in shallow basaltic soils. Sci. Hortic. 197:261-271. Kuşçu, H., A.Turhan and A.O. Demir. 2014. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agric. Water Manag. 133:92-103. Kyriacou, M.C., Y. Rouphael, G. Colla, R. Zrenner and D. Schwarz. 2017. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 8:741. Liu, F., C.R. Jensen, A. Shahanzari, M.N. Andersen and S.-E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 168:831-836. Liu, F., A. Shahnazari, M.N. Andersen, S.E. Jacobsen and C.R. Jensen. 2006a. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hortic. 109:113-117. Liu, F., A. Shahnazari, M.N. Andersen, S.E. Jacobsen and C.R. Jensen. 2006b. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J. Exp. Bot. 57:3727-35. Mingo, D.M., J.C. Theobald, M.A. Bacon, W.J. Davies and I.C. Dodd, 2004. Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Funct. Plant Biol. 31:971-978. Mishra, K.B., R. Iannacone, A. Petrozza, A. Mishra, N. Armentano, G. La Vecchia, M. Trtílek, F. Cellini and L. Nedbal. 2012. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 182:79-86. Miskovic, A., O. Ilic, J. Bacanovic, V. Vujasinovic and B. Kukić. 2016. Effect of eggplant rootstock on yield and quality parameters of grafted tomato. Acta. Sci. Pol.-Hortoru.15:149-159. Moles, T.M., L. Mariotti, L.F. De Pedro, L. Guglielminetti, P. Picciarelli and A. Scartazza. 2018. Drought induced changes of leaf-to-root relationships in two tomato genotypes. Plant Physiol. Biochem. 128:24-31. Netto, A.T., E. Campostrini, J.G. de Oliveira and R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. 104:199-209. Nilsen, E.T., J. Freeman, R. Grene and Tokuhisa, J. 2014. A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One. 9:e115380. Nuruddin, M.M., C.A. Madramootoo and G.T. Dodds. 2003. Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience. 38:1389-1393. Osakabe, Y., K. Osakabe, K. Shinozaki and L.S.P. Tran. 2014. Response of plants to water stress. Front. Plant Sci. 5:86. Patanè, C., S. Tringali and O. Sortino. 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 129:590-596. Poudel, S.R. and W.S. Lee. 2009. Response of eggplant (Solanum melongena L.) as rootstock for tomato (Solanum lycopersicum L.). Horticulture NCHU. 34:39-52. Raffo, A., C. Leonardi, V. Fogliano, P. Ambrosino, M. Salucci, L. Gennaro, R. Bugianesi, F. Giuffrida, G. Quaglia. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 50:6550-6556. Rogers, H.H., S.A. Prior, G.B. Runion and R.J. Mitchell. 1995. Root to shoot ratio of crops as influenced by CO2. Plant soil. 187:229-248. Sepaskhah, A.R. and S.H. Ahmadi. 2012. A review on partial root-zone drying irrigation. Int. J. Plant Prod. 4:241-258. Shao, H.B., L.Y. Chu, C.A. Jaleel and C.X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. C R Biol. 331:215-25. Teixeira, G.H., J.F. Durigan, R.E. Alves, T.J. O’Hare. 2008. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres. Postharvest Biol. Technol. 48:415-421. Valerio, M., S. Lovelli, A. Sofo, M. Perniola, A. Scopa and M. Amato. 2017. Root and leaf abscisic acid concentration impact on gas exchange in tomato (Lycopersicon esculentum Mill) plants subjected to partial root-zone drying. Ital. J. Agron. 12:25-32. Wang, Y., F. Liu, M.N. Andersen and C.R. Jensen. 2010a. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Funct. Plant Biol.37:175-182. Wang, Y., F. Liu, A. de Neergaard, L.S. Jensen, J. Luxhøi and C.R. Jensen. 2010b. Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes. Plant Soil 337:167-177. Zegbe, J.A., M.H. Behboudian and B.E. Clothier. 2005. Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrigation Sci. 24:203-210. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77256 | - |
| dc.description.abstract | 有鑑於臺灣水資源短缺情況日益嚴重,發展作物節水灌溉栽培為當務之急。許多研究表明節水灌溉可提高番茄果實品質並維持產量,惟節水成效因作物種類、環境因子、施用時機等之不同而時有差異。本試驗於不同季節與發育階段應用節水灌溉技術,建立‘玉女’小果番茄最適節水灌溉模式。試驗一秋冬季栽培結果顯示,實生‘玉女’小果番茄於果實發育至綠熟期進行VWC 8%節水灌溉處理約可節省41%的水量,且多數果實品質與全量灌溉對照組無顯著差異,僅a*值及b*值顯著低於全量灌溉對照組。試驗二春夏季栽培結果呈現,嫁接處理可提高果實總可溶性固形物及抗壞血酸含量,果皮呈色方面為Hue angle值、b*值及彩度較低,其餘項目與非嫁接對照組並無顯著差異。而相較於全量灌溉對照組,嫁接‘玉女’小果番茄於果實綠熟期施用VWC 22%節水處理可節省約56%用水量,提高水分利用效率、維持產量並具備與對照組相似之果實品質,僅a*值較高。試驗三秋冬季栽培嫁接苗搭配不同發育階段節水對大部分果實品質及產量無顯著影響,僅於果實抗壞血酸含量、可銷售產量及水分利用效率有顯著差別,惟果實抗壞血酸含量與可銷售產量並無明確趨勢。水分利用效率於開花期與果實綠熟期進行節水顯著較佳,灌溉方式則以VWC 11%節水處理為顯著較高。秋冬季栽培之嫁接苗推薦於果實綠熟期施用VWC 11%節水灌溉可節省約7.3%用水量、增加WUE,並維持果實品質及產量。本研究結果顯示,節水灌溉成效因嫁接、季節、灌溉方法及發育階段而異。相對於實生苗,使用嫁接苗進行栽培可獲得較佳果實品質。本研究建議春夏季栽培嫁接苗於果實綠熟期進行22%節水灌溉,可提高WUE並維持果實品質及產量; 秋冬季栽培嫁接苗建議於果實綠熟期使用VWC 11%節水灌溉,可增加WUE,同時維持果實品質及產量。 | zh_TW |
| dc.description.abstract | In point of the raising shortage of water resources in Taiwan, the development of crop deficit irrigation is a priority. Many studies had revealed that deficit irrigation could improve tomato fruit quality and maintain yield, but the effect varied with crops, environmental factors, and timing of application etc. This research applied deficit irrigation at different seasons and developmental stages, in order to establish the optimal deficit irrigation mode for ‘Rosada’ cherry tomato. The results in experiment I showed that when autumn and winter cultivated non-grafted ‘Rosada’ cherry tomato applied 8% deficit irrigation treatment at mature green fruit stage could save about 41% of water, and the most of fruit quality was not significantly different from the full irrigation treatment except a* value and b* value significantly lower than full irrigation. In spring and summer cultivation, results of experiment II showed that the grafted treatment could increase the total soluble solids and ascorbic acid content of the fruit. When it came to color, Hue angle value, b* value and Chroma value of grafted treatment significantly declined but the other items were not significantly different from the non-grafted control. By applying 22% deficit irrigation at mature green fruit stage of grafted ‘Rosada’ cherry tomato, it could save about 56% of water, increase water use efficiency (WUE), and maintain fruit quality and yield similar to the control group except a* value was higher. In experiment III, the autumn and winter cultivated grafted seedlings used of diverse deficit irrigation at different developmental stages had no significant effect on most of the fruit qualitiy and yield except ascorbic acid content, marketable yield and WUE. However, there were no clear trend in ascorbic acid content and the marketable yield. WUE were significantly better when deficit irrigation applied from the flowering stage and the mature green fruit stage, and the VWC 11% deficit irrigation treatment was significantly higher than other irrigation method. Therefore, grafted seedlings cultivated in autumn and winter were recommended to use 11% deficit irrigation at mature green fruit stage to save about 7.3% water, increase WUE, and maintain fruit quality and yield. The results of this research revealed that the effect of deficit irrigation varied with grafting, season, irrigation method and developmental stage. Compared with the non-grafted seedlings, it could obtain better fruit quality by using the grafted seedlings. For spring and summer cultivation of grafted seedlings, this research recommended using 22% deficit irrigation at mature green fruit stage because of improving WUE, maintaining fruit quality and yield. For autumn and winter cultivation of grafted seedlings, it suggested that using 11% deficit irrigation at mature green fruit stage because of increasing WUE, maintaining fruit quality and yield. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:58Z (GMT). No. of bitstreams: 1 ntu-108-R06628117-1.pdf: 3550545 bytes, checksum: 93d2958d6ea85d61949ad3dad6eeeb5f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 表目錄 8
圖目錄 10 前言 12 前人研究 13 一、 番茄重要性及產業發展現況 13 二、 缺水逆境對植物生理之影響 13 三、 節水灌溉對番茄生長及果實品質之影響 15 四、 嫁接應用於改善番茄耐旱性及果實品質 17 材料與方法 19 一、試驗材料 19 二、栽培條件與管理方式 19 三、試驗方法 20 試驗一、秋冬季應用節水灌溉對‘玉女’實生苗生長及果實品質之影響 20 試驗二、春夏季應用不同程度節水灌溉對‘玉女’番茄實生苗及嫁接苗之影響 20 試驗三、秋冬季應用根系分區灌溉及不同發育階段節水對‘玉女’番茄嫁接苗之影響 21 四、調查項目 22 五、統計方法 24 結果 25 一、秋冬季應用節水灌溉對‘玉女’實生苗生長及果實品質之影響 25 二、春夏季應用不同程度節水灌溉對‘玉女’番茄實生苗及嫁接苗之影響 26 三、秋冬季栽培應用根系分區灌溉及不同發育階段節水對‘玉女’番茄嫁接苗生長及果實品質之影響 28 討論 84 結論 88 參考文獻 89 附錄 94 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 小果番茄 | zh_TW |
| dc.subject | 嫁接 | zh_TW |
| dc.subject | 調缺灌溉 | zh_TW |
| dc.subject | 根系分區灌溉 | zh_TW |
| dc.subject | grafting | en |
| dc.subject | partial root-zone irrigation | en |
| dc.subject | cherry tomato | en |
| dc.subject | regulated deficit irrigation | en |
| dc.title | 調缺灌溉對‘玉女’小果番茄果實產量及品質之影響 | zh_TW |
| dc.title | Effects of Regulated Deficit Irrigation on Fruit Yield and Quality of Cherry Tomato ‘Rosada’ | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅筱鳳;張育森 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Feng Lo;Yu-Sen Chang | en |
| dc.subject.keyword | 小果番茄,嫁接,調缺灌溉,根系分區灌溉, | zh_TW |
| dc.subject.keyword | cherry tomato,grafting,regulated deficit irrigation,partial root-zone irrigation, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU201903211 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
