請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77248完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳平 | zh_TW |
| dc.contributor.author | 陳瑀涵 | zh_TW |
| dc.contributor.author | Yu-Han Chen | en |
| dc.date.accessioned | 2021-07-10T21:52:39Z | - |
| dc.date.available | 2024-08-14 | - |
| dc.date.copyright | 2019-08-16 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Chapter 1
1. Meek, G. A.; Moses, M. J. Microtubulation of the inner membrane of the nuclear envelope. J. Biophys. Biochem. Cytol. 1961, 10, 121. 2. Pauling, L.; Corey, R. B. The structure of hair, muscle, and related proteins. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 261. 3. Radzicka, A.; Wolfenden, R. A proficient enzyme. Science 1995, 267, 90. 4. Aderem, A.; Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782. 5. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984, 308, 693. 6. Rodbell, M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 1980, 284, 17. 7. Davey, M. J.; O'Donnell, M. Mechanisms of DNA replication. Curr. Opin. Chem. Biol. 2000, 4, 581. 8. Holm, L.; Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 1993, 233, 123. 9. Pauling, L.; Corey, R. B. The planarity of the amide group in polypeptides. J. Am. Chem. Soc. 1952, 74, 3964. 10. Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95. 11. Schellman, J. A.; Schellman, C. G. Kaj Ulrik Linderstrøm-Lang (1896-1959). Protein Sci. 1997, 6, 1092. 12. Sanger, F. The arrangement of amino acids in proteins. Adv. Protein Chem. 1952, 7, 1. 13. Kubo, Y.; Reuveny, E.; Slesinger, P. A.; Jan, Y. N.; Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 1993, 364, 802. 14. Pauling, L.; Corey, R. B.; Branson, H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205. 15. Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251. 16. Compton, L. A.; Johnson, W. C. Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal. Biochem. 1986, 155, 155. 17. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577. 18. Edsall, J. T.; Flory, P. J.; Kendrew, J. C.; Liquori, A. M.; Némethy, G.; Ramachandran, G. N.; Scheraga, H. A. A proposal of standard conventions and nomenclature for the description of polypeptide conformations. J. Mol. Biol. 1966, 15, 399. 19. Barlow, D. J.; Thornton, J. M. Helix geometry in proteins. J. Mol. Biol. 1988, 201, 601. 20. Ramı́rez-Alvarado, M.; Kortemme, T.; Blanco, F. J.; Serrano, L. β-Hairpin and β-sheet formation in designed linear peptides. Biorg. Med. Chem. 1999, 7, 93. 21. Cowan, P. M.; McGavin, S.; North, A. C. T. The polypeptide chain configuration of collagen. Nature 1955, 176, 1062. 22. Chebrek, R.; Leonard, S.; de Brevern, A. G.; Gelly, J.-C. PolyprOnline: polyproline helix II and secondary structure assignment database. Database 2014, 2014, 1. 23. Perutz, M. F. Hemoglobin structure and respiratory transport. Sci. Am. 1978, 239, 92. 24. Luheshi, L. M.; Crowther, D. C.; Dobson, C. M. Protein misfolding and disease: from the test tube to the organism. Curr. Opin. Chem. Biol. 2008, 12, 25. 25. Bartzokis, G.; Lu, P. H.; Mintz, J. Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimers Dement. 2007, 3, 122. 26. Irvine, G. B.; El-Agnaf, O. M.; Shankar, G. M.; Walsh, D. M. Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Mol. Med. 2008, 14, 451. 27. Ironside, J. W. Prion diseases in man. J. Pathol. 1998, 186, 227. 28. Dill, K. A. Dominant forces in protein folding. Biochemistry 1990, 29, 7133. 29. Nakamura, H. Roles of electrostatic interaction in proteins. Q. Rev. Biophys. 1996, 29, 1. 30. Perutz, M. F. Electrostatic effects in proteins. Science 1978, 201, 1187. 31. Hagler, A. T.; Huler, E.; Lifson, S. Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 1974, 96, 5319. 32. Hagler, A. T.; Lifson, S. Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 1974, 96, 5327. 33. Sticke, D. F.; Presta, L. G.; Dill, K. A.; Rose, G. D. Hydrogen bonding in globular proteins. J. Mol. Biol. 1992, 226, 1143. 34. Chothia, C. Conformation of twisted β-pleated sheets in proteins. J. Mol. Biol. 1973, 75, 295. 35. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640. 36. Makhatadze, G. I.; Privalov, P. L. Energetics of protein structure. Adv. Protein Chem. 1995, 47, 307. 37. Kussell, E.; Shimada, J.; Shakhnovich, E. I. Excluded volume in protein side-chain packing. J. Mol. Biol. 2001, 311, 183. 38. Makhatadze, G. I.; Loladze, V. V.; Ermolenko, D. N.; Chen, X.; Thomas, S. T. Contribution of surface salt bridges to protein stability: guidelines for protein engineering. J. Mol. Biol. 2003, 327, 1135. 39. Feinberg, G.; Sucher, J. General theory of the van der Waals interaction: a model-independent approach. Phys. Rev. A 1970, 2, 2395. 40. Silbey, R. J.; Alberty, R. A.; Bawendi, M. G. Physical Chemistry. Wiley: India, 2004. 41. Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929. 42. Brinckmann, J. Collagens at a glance. In Collagen: Primer in Structure, Processing and Assembly, Brinckmann, J.; Notbohm, H.; Müller, P. K., Eds. Springer: Berlin, Heidelberg, 2005; pp 1. 43. Chang, S.-W.; Shefelbine, Sandra J.; Buehler, Markus J. Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys. J. 2012, 102, 640. 44. Wang, A. Y.; Foss, C. A.; Leong, S.; Mo, X.; Pomper, M. G.; Yu, S. M. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity. Biomacromolecules 2008, 9, 1755. 45. Li, Y.; Foss, C. A.; Summerfield, D. D.; Doyle, J. J.; Torok, C. M.; Dietz, H. C.; Pomper, M. G.; Yu, S. M. Targeting collagen strands by photo-triggered triple-helix hybridization. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14767. 46. Li, Y.; Foss, C. A.; Pomper, M. G.; Yu, S. M. Imaging denatured collagen strands in vivo and ex vivo via photo-triggered hybridization of caged collagen mimetic peptides. J. Vis. Exp. 2014, e51052. 47. Lapiere, C. M. Collagen in health and disease. J. Am. Acad. Dermatol. 1984, 10, 149. 48. Beck, K.; Brodsky, B. Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil. J. Struct. Biol. 1998, 122, 17. 49. Venugopal, M. G.; Ramshaw, J. A. M.; Braswell, E.; Zhu, D.; Brodsky, B. Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 1994, 33, 7948. 50. Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86. 51. Kadler, K. E.; Baldock, C.; Bella, J.; Boot-Handford, R. P. Collagens at a glance. J. Cell Sci. 2007, 120, 1955. 52. Koide, T. Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Philos. Trans. R. Soc. Lond., B: Biol. Sci. 2007, 362, 1281. 53. Wang, A. Y.; Mo, X.; Chen, C. S.; Yu, S. M. Facile modification of collagen directed by collagen mimetic peptides. J. Am. Chem. Soc. 2005, 127, 4130. 54. Kotch, F. W.; Raines, R. T. Self-assembly of synthetic collagen triple helices. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3028. 55. Goodman, M.; Bhumralkar, M.; Jefferson, E. A.; Kwak, J.; Locardi, E. Collagen mimetics. Peptide Science 1998, 47, 127. 56. Holmgren, S. K.; Bretscher, L. E.; Taylor, K. M.; Raines, R. T. A hyperstable collagen mimic. Chem. Biol. 1999, 6, 63. 57. Stetefeld, J.; Frank, S.; Jenny, M.; Schulthess, T.; Kammerer, R. A.; Boudko, S.; Landwehr, R.; Okuyama, K.; Engel, J. Collagen stabilization at atomic level: crystal structure of designed (GlyProPro)10 foldon. Structure 2003, 11, 339. 58. Yu, S. M.; Li, Y.; Kim, D. Collagen mimetic peptides: progress towards functional applications. Soft Matter 2011, 7, 7927. 59. Hwang, J.; Huang, Y.; Burwell, T. J.; Peterson, N. C.; Connor, J.; Weiss, S. J.; Yu, S. M.; Li, Y. In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 2017, 11, 9825. 60. Wojtowicz, A. M.; Shekaran, A.; Oest, M. E.; Dupont, K. M.; Templeman, K. L.; Hutmacher, D. W.; Guldberg, R. E.; García, A. J. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 2010, 31, 2574. 61. Chattopadhyay, S.; Guthrie, K. M.; Teixeira, L.; Murphy, C. J.; Dubielzig, R. R.; McAnulty, J. F.; Raines, R. T. Anchoring a cytoactive factor in a wound bed promotes healing. J. Tissue Eng. Regen. Med. 2016, 10, 1012. 62. Fietzek, P. P.; Kühn, K. Information contained in the amino acid sequence of the α1(I)-chain of collagen and its consequences upon the formation of the triple helix, of fibrils and crosslinks. Mol. Cell. Biochem. 1975, 8, 141. 63. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Peptide investigations of pairwise interactions in the collagen triple-helix. J. Mol. Biol. 2002, 316, 385. 64. Katz, E. P.; David, C. W. Energetics of intrachain salt-linkage formation in collagen. Biopolymers 1990, 29, 791. 65. Luo, T.; Kiick, K. L. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials. Eur. Polym. J. 2013, 49, 2998. 66. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 2005, 44, 1414. 67. Persikov, A. V.; Ramshaw, J. A. M.; Brodsky, B. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343. 68. Gauba, V.; Hartgerink, J. D. Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 2007, 129, 15034. 69. Xu, F.; Zahid, S.; Silva, T.; Nanda, V. Computational design of a collagen A:B:C-type heterotrimer. J. Am. Chem. Soc. 2011, 133, 15260. 70. Yu, C.-H. Effect of charged amino acid side chain length on ABC heterotrimeric collagen triple helix stability. M.S. Thesis, National Taiwan University, 2018. 71. Chen, Y.-C. Effect of positively charged amino acid side chain length at the X position and the Y position on collagen triple helix stability. M.S. Thesis, National Taiwan University, 2018. 72. Page-McCaw, A.; Ewald, A. J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221. 73. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786. 74. Wahyudi, H.; Reynolds, A. A.; Li, Y.; Owen, S. C.; Yu, S. M. Targeting collagen for diagnostic imaging and therapeutic delivery. J. Controlled Release 2016, 240, 323. Chapter 2 1. Di Lullo, G. A. S., S. M.; Korkko, J.; Ala-Kokko, L.; San Antonio, J. D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 2002, 277, 4223. 2. Chang, S. W.; Shefelbine, Sandra J.; Buehler, Markus J. Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys. J. 2012, 102, 640. 3. Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12285. 4. Gauba, V.; Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 2007, 129, 2683. 5. Beck, K.; Brodsky, B. Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil. J. Struct. Biol. 1998, 122, 17. 6. Gelse, K.; Pöschl, E.; Aigner, T. Collagens - structure, function, and biosynthesis. Adv. Drug Del. Rev. 2003, 55, 1531. 7. Venugopal, M. G.; Ramshaw, J. A. M.; Braswell, E.; Zhu, D.; Brodsky, B. Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 1994, 33, 7948. 8. Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86. 9. Engel, J.; Bächinger, H. P. Structure, stability and folding of the collagen triple helix. In Collagen: Primer in Structure, Processing and Assembly, Brinckmann, J.; Notbohm, H.; Müller, P. K., Eds. Springer: Berlin, Heidelberg, 2005; pp 7. 10. Jones, E. Y.; Miller, A. Analysis of structural design features in collagen. J. Mol. Biol. 1991, 218, 209. 11. Berisio, R.; Vitagliano, L.; Mazzarella, L.; Zagari, A. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3. Protein Sci. 2002, 11, 262. 12. Chan, V. C.; Ramshaw, J. A. M.; Kirkpatrick, A.; Beck, K.; Brodsky, B. Positional preferences of ionizable residues in Gly-X-Y triplets of the collagen triple-helix. J. Biol. Chem. 1997, 272, 31441. 13. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960. 14. Katz, E. P.; David, C. W. Energetics of intrachain salt-linkage formation in collagen. Biopolymers 1990, 29, 791. 15. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 2001, 123, 777. 16. Hodges, J. A.; Raines, R. T. Stereoelectronic and steric effects in the collagen triple helix: toward a code for strand association. J. Am. Chem. Soc. 2005, 127, 15923. 17. Shoulders, M. D.; Hodges, J. A.; Raines, R. T. Reciprocity of steric and stereoelectronic effects in the collagen triple helix. J. Am. Chem. Soc. 2006, 128, 8112. 18. Gauba, V.; Hartgerink, J. D. Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 2007, 129, 15034. 19. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 2005, 44, 1414. 20. Wang, A. Y.; Foss, C. A.; Leong, S.; Mo, X.; Pomper, M. G.; Yu, S. M. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity. Biomacromolecules 2008, 9, 1755. 21. Chattopadhyay, S.; Raines, R. T. Review collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821. 22. Fietzek, P. P.; Kühn, K. Information contained in the amino acid sequence of the α1(I)-chain of collagen and its consequences upon the formation of the triple helix, of fibrils and crosslinks. Mol. Cell. Biochem. 1975, 8, 141. 23. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75. 24. Holmgren, S. K.; Bretscher, L. E.; Taylor, K. M.; Raines, R. T. A hyperstable collagen mimic. Chem. Biol. 1999, 6, 63. 25. Berg, R. A.; Prockop, D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 1973, 52, 115. 26. Nagarajan, V.; Kamitori, S.; Okuyama, K. Structure analysis of a collagen-model peptide with a (Pro-Hyp-Gly) sequence repeat. J. Biochem. 1999, 125, 310. 27. Suzuki, E.; Fraser, R. D. B.; MacRae, T. P. Role of hydroxyproline in the stabilization of the collagen molecule via water molecules. Int. J. Biol. Macromol. 1980, 2, 54. 28. Traub, W. Some stereochemical implications of the molecular conformation of collagen. Isr. J. Chem. 1974, 12, 435. 29. Bansal, M.; Ramakrishnan, C.; Ramachandran, G. N. Stabilization of the collagen structure by hydroxyproline residues. Proc. Indian Acad. Sci., Sect. A 1975, 82, 152. 30. Horng, J. C.; Raines, R. T. Stereoelectronic effects on polyproline conformation. Protein Sci. 2006, 15, 74. 31. BÄChinger, H. P.; Engel, J.; Bruckner, P.; Timpl, R. The role of cis-trans isomerization of peptide bonds in the coil ⇄ triple helix conversion of collagen. Eur. J. Biochem. 1978, 90, 605. 32. Brandts, J. F.; Halvorson, H. R.; Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 1975, 14, 4953. 33. Lin, L. N.; Brandts, J. F. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins. Biochemistry 1978, 17, 4102. 34. Ramachandran, G. N.; Kartha, G. Structure of collagen. Nature 1954, 174, 269. 35. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Peptide investigations of pairwise interactions in the collagen triple-helix. J. Mol. Biol. 2002, 316, 385. 36. Luo, T.; Kiick, K. L. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials. Eur. Polym. J. 2013, 49, 2998. 37. Persikov, A. V.; Ramshaw, J. A. M.; Brodsky, B. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343. 38. Fallas, J. A.; Hartgerink, J. D. Computational design of self-assembling register-specific collagen heterotrimers. Nat. Commun. 2012, 3, 1087. 39. Xu, F.; Zahid, S.; Silva, T.; Nanda, V. Computational design of a collagen A:B:C-type heterotrimer. J. Am. Chem. Soc. 2011, 133, 15260. 40. Xu, F.; Silva, T.; Joshi, M.; Zahid, S.; Nanda, V. Circular permutation directs orthogonal assembly in complex collagen peptide mixtures. J. Biol. Chem. 2013, 288, 31616. 41. Jalan, A. A.; Demeler, B.; Hartgerink, J. D. Hydroxyproline-free single composition ABC collagen heterotrimer. J. Am. Chem. Soc. 2013, 135, 6014. 42. Davis, J. M.; Bächinger, H. P. Hysteresis in the triple helix-coil transition of type III collagen. J. Biol. Chem. 1993, 268, 25965. 43. Engel, J.; Bächinger, H. P. Cooperative equilibrium transitions coupled with a slow annealing step explain the sharpness and hysteresis of collagen folding. Matrix Biol. 2000, 19, 235. 44. Mizuno, K.; Boudko, S. P.; Engel, J.; Bächinger, H. P. Kinetic hysteresis in collagen folding. Biophys. J. 2010, 98, 3004. 45. Persikov, A. V.; Xu, Y.; Brodsky, B. Equilibrium thermal transitions of collagen model peptides. Protein Sci. 2004, 13, 893. 46. Wang, W.-M. Effect of the number of POG triplets on heterotrimeric collagen triple helix stability and specificity. M.S. Thesis, National Taiwan University, 2017. 47. Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 1993, 32, 5560. 48. Atherton, E.; Fox, H.; Harkiss, D.; Logan, C. J.; Sheppard, R. C.; Williams, B. J. A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. J. Chem. Soc., Chem. Commun. 1978, 537. 49. Fields, G. B.; Noble, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161. 50. Piez, K. A.; Sherman, M. R. Characterization of the product formed by renaturation of α1-CB2, a small peptide from collagen. Biochemistry 1970, 9, 4129. 51. Ruzza, P.; Siligardi, G.; Donella-Deana, A.; Calderan, A.; Hussain, R.; Rubini, C.; Cesaro, L.; Osler, A.; Guiotto, A.; Pinna, L. A.; Borin, G. 4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. J. Pept. Sci. 2006, 12, 462. 52. Kümin, M.; Sonntag, L.-S.; Wennemers, H. Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 2007, 129, 466. 53. Sanchez-Ruiz, J. M.; Lopez-Lacomba, J. L.; Cortijo, M.; Mateo, P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 1988, 27, 1648. 54. Yu, C.-H. Effect of charged amino acid side chain length on ABC heterotrimeric collagen triple helix stability. M.S. Thesis, National Taiwan University, 2018. 55. Chen, Y.-C. Effect of positively charged amino acid side chain length at the X position and the Y position on collagen triple helix stability. M.S. Thesis, National Taiwan University, 2018. 56. Horovitz, A. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des. 1996, 1, R121. 57. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 1967, 6, 1948. 58. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995, 4, 2411. 59. Engel, J.; Chen, H.-T.; Prockop, D. J.; Klump, H. The triple helix ⇌ coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Biopolymers 1977, 16, 601. 60. Long, C. G.; Braswell, E.; Zhu, D.; Apigo, J.; Baum, J.; Brodsky, B. Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence. Biochemistry 1993, 32, 11688. 61. Shah, N. K.; Ramshaw, J. A. M.; Kirkpatrick, A.; Shah, C.; Brodsky, B. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Biochemistry 1996, 35, 10262. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77248 | - |
| dc.description.abstract | 膠原蛋白是動物體內含量最豐富的蛋白質,在組織發育與再生的過程中扮演重要的角色。膠原蛋白由三條左手螺旋的polyproline II螺旋互相纏繞而成,最後形成右手三股螺旋的結構。序列主要由Gly-Xaa-Yaa三聯重複單元組成。帶電荷胺基酸比預期中還要更頻繁地出現於膠原蛋白序列之中,並且序列中X位置與Y位置也不是隨機分布的,顯示帶電荷胺基酸對於膠原蛋白的重要性。帶電荷胺基酸透過形成鏈間或鏈內的成對作用力來參與膠原蛋白三股螺旋的生成。同元三聚體的膠原蛋白三股螺旋中潛在的鏈間或鏈內成對作用力於先前已經被研究過。本篇主要研究膠原蛋白鏈內的離子對作用力對於穩定度的影響。在此,膠原蛋白三股螺旋的設計是基於ABC形式的異元三聚體,這樣一來可以避免其他不必要的作用力干擾。利用圓二色光譜儀來測量膠原蛋白三股螺旋的熱變性與熱重組過程,並從得到的熱變性數據推導出熱力學參數,再利用雙突變循環分析方法探討同一條鏈上的離子對之間是否存在作用力。實驗結果顯示,大部分帶相異電荷的離子對在膠原蛋白三股螺旋結構中存在著作用力,其中以在Y位置的Lys-Glu離子對的作用力最強。Lys-Asp離子對不論X位置或Y位置均沒有明顯的作用力。此外也 發現,同樣的離子對在Y位置會比在X位置具有更強的作用力。這些研究結果顯示,帶有吸引力的離子對作用力確實存在於膠原蛋白三股螺旋中,並且對於膠原蛋白三股螺旋結構的穩定性有所幫助。 | zh_TW |
| dc.description.abstract | Collagen is the most abundant protein in animals, providing a structural framework during tissue development and regeneration. Collagen forms a right-handed triple helix that contains three left-handed polyproline II-like helices. The common sequence of collagen triple helix consists of Gly-Xaa-Yaa triplets. Charged residues occur more frequently than expected and are non-randomly distributed between the Xaa and Yaa positions in collagen chain. Charged residues participate in collagen triple helix formation through interchain/intrachain pairwise interactions. Potential interchain/intrachain pairwise interactions were previously studied in homotrimers. This research focuses on the effect of intrachain ion pairing interactions between oppositely charged residues on collagen triple helix stability. The collagen triple helices were designed based on an ABC heterotrimer to avoid undesirable complicating interactions. All peptides were synthesized by Fmoc-based solid phase peptide synthesis. The thermal denaturation/renaturation of collagen triple helices was monitored by circular dichroism (CD) spectroscopy. The thermodynamic parameters Tm, ∆HTm, ∆STm, and ∆Gunfold were derived from the thermal denaturation data. Double mutant cycle was used to determine the potential intrachain ion pairing interaction. The results showed that almost all of the oppositely charged residue pairs exhibited a stabilizing ion pairing interaction. The most stabilizing interaction was observed for Lys-Glu between two adjacent Y positions. No interactions were seen for Lys-Asp between two adjacent X or Y positions. Additionally, the same charged pair seemed to provide more stabilizing interaction energy at Y positions compared to that at X positions. These results demonstrate that attractive ion pairing interactions within collagen chains contributes to the stabilization of collagen triple helix formation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:39Z (GMT). No. of bitstreams: 1 ntu-108-R06223106-1.pdf: 3789982 bytes, checksum: 1a5b0b72eac8ac4d9479f74bb12bbd55 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 謝誌 ...................................................................................................................... i
中文摘要 .............................................................................................................. iii Abstract............................................................................................................... iv Table of Content ................................................................................................. vi List of Figures..................................................................................................... viii List of Tables ..................................................................................................... xii Abbreviations .................................................................................................... xiii Chapter 1 Introduction 1.1 Protein ................................................................................................... 2 1.2 Protein Structure .................................................................................. 4 1.3 Driving Forces for Protein Folding.…………………………………………………… 8 Electrostatic Interactions ..................................................................... 8 Hydrogen Bonding ............................................................................... 9 Hydrophobic Effect .............................................................................. 9 Van der Waals Interactions ................................................................. 10 1.4 Collagen............................................................................................... 10 1.5 Collagen Mimetic Peptide .....................................................................11 1.6 Thesis Overview .................................................................................. 12 1.7 References .......................................................................................... 14 Chapter 2 Effect of Intrachain Ion Pairing Interactions between Positively Charged (i) and Negatively Charged (i+3) residues on Collagen Triple Helix Stability 2.1 Introduction ........................................................................................ 22 Structure of Collagen.......................................................................... 22 Stability of Collagen Triple Helix ........................................................ 24 Pairwise Electrostatic Interactions in Collagen Triple Helix............... 26 Design of Heterotrimeric Collagen triple helices ............................... 29 Hysteresis of Collagen Folding/Unfolding........................................... 31 2.2 Results and Discussion…………………………………………………………………… 32 Peptide Design..................................................................................... 32 Peptide Synthesis………………………………………………………………..…………. 36 Preliminary Assessment of Different Combinations ……………………….. 37 Thermal Denaturation with Full Thermal Equilibrium ……………………... 47 Ion Pairing Interactions ....................................................................... 59 2.3 Conclusion........................................................................................... 62 2.4 Future Aspect...................................................................................... 63 2.5 Acknowledgements ............................................................................ 64 2.6 Experimental Section ......................................................................... 64 General Materials and Methods.......................................................... 64 Peptide Synthesis................................................................................ 65 UV-vis Spectroscopy (UV) .................................................................. 74 Circular Dichroism Spectroscopy (CD) ............................................... 75 Double Mutant Cycle Analysis............................................................. 79 2.7 References .......................................................................................... 81 | - |
| dc.language.iso | en | - |
| dc.subject | 離子對作用力 | zh_TW |
| dc.subject | 膠原蛋白三股螺旋 | zh_TW |
| dc.subject | 雙突變循環 | zh_TW |
| dc.subject | 熱變性實驗 | zh_TW |
| dc.subject | 帶電荷胺基酸 | zh_TW |
| dc.subject | ion pairing interaction | en |
| dc.subject | double mutant cycle | en |
| dc.subject | thermal denaturation | en |
| dc.subject | charged amino acid | en |
| dc.subject | collagen triple helix | en |
| dc.title | 帶正電荷(i)與負電荷(i+3)的胺基酸鏈內離子對作用力對膠原蛋白穩定度的影響 | zh_TW |
| dc.title | Effect of Intrachain Ion Pairing Interactions between Positively Charged (i) and Negatively Charged (i+3) residues on Collagen Triple Helix Stability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪嘉呈;黃人則;陳佩燁 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 膠原蛋白三股螺旋,帶電荷胺基酸,離子對作用力,熱變性實驗,雙突變循環, | zh_TW |
| dc.subject.keyword | collagen triple helix,charged amino acid,ion pairing interaction,thermal denaturation,double mutant cycle, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU201902008 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
