Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游文岳zh_TW
dc.contributor.advisorWen-Yueh Yuen
dc.contributor.author李冠輝zh_TW
dc.contributor.authorKuan-Hui Leeen
dc.date.accessioned2021-07-10T21:52:17Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-22-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Nations, O. and F. and A. O. of the U. Biofuels. in OECD-FAO Agricultural Outlook 2018-2027 191–207 (OECD Publishing, 2018). doi:10.1787/agr_outlook-2018-en
2. Ochoa-Gómez, J. R., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C. &Belsué, M. A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Organic Process Research and Development 16, 389–399 (2012).
3. Pinheiro, R. S., Monteiro, M. R., Batalha, M. O., daSilva César, A. &Kugelmeier, C. L. Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews 88, 109–122 (2018).
4. Anitha, M., Kamarudin, S. K. &Kofli, N. T. The potential of glycerol as a value-added commodity. Chemical Engineering Journal 295, 119–130 (2016).
5. Katryniok, B. et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry 13, 1960–1979 (2011).
6. Sonnati, M. O. et al. Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry 15, 283–306 (2013).
7. Kovvali, A. S. &Sirkar, K. K. Carbon Dioxide Separation with Novel Solvents as Liquid Membranes. Industrial & Engineering Chemistry Research 41, 2287–2295 (2002).
8. Teng, W. K., Ngoh, G. C., Yusoff, R. &Aroua, M. K. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management 88, 484–497 (2014).
9. Takagaki, A., Iwatani, K., Nishimura, S. &Ebitani, K. Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chemistry 12, 578 (2010).
10. Tundo, P. &Selva, M. The chemistry of dimethyl carbonate. Accounts of Chemical Research 35, 706–716 (2002).
11. Song, X., Wu, Y., Cai, F., Pan, D. &Xiao, G. High-efficiency and low-cost Li/ZnO catalysts for synthesis of glycerol carbonate from glycerol transesterification: The role of Li and ZnO interaction. Applied Catalysis A: General 532, 77–85 (2017).
12. Parameswaram, G., Srinivas, M., Hari Babu, B., Sai Prasad, P. S. &Lingaiah, N. Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catalysis Science & Technology 3, 3242 (2013).
13. Ochoa-Gómez, J. R. et al. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Applied Catalysis A: General 366, 315–324 (2009).
14. Algoufi, Y. T. &Hameed, B. H. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. Fuel Processing Technology 126, 5–11 (2014).
15. Nguyen-Phu, H., Park, C. &Shin, E. W. Dual catalysis over ZnAl mixed oxides in the glycerolysis of urea: Homogeneous and heterogeneous reaction routes. Applied Catalysis A: General 552, 1–10 (2018).
16. Turney, T. W., Patti, A., Gates, W., Shaheen, U. &Kulasegaram, S. Formation of glycerol carbonate from glycerol and urea catalysed by metal monoglycerolates. Green Chemistry 15, 1925–1931 (2013).
17. Liu, J., Li, Y., Zhang, J. &He, D. General Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Applied Catalysis A, General 513, 9–18 (2016).
18. Selva, M., Perosa, A. &Fiorani, G. Dimethyl Carbonate: a Versatile Reagent for a Sustainable Valorization of Renewables. Green Chemistry 20, 288–322 (2017).
19. Li, J. &Wang, T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. Journal of Chemical Thermodynamics 43, 731–736 (2011).
20. Song, X. et al. Synthesis of glycerol carbonate over porous La-Zr based catalysts: The role of strong and super basic sites. Journal of Alloys and Compounds 750, 828–837 (2018).
21. Kondawar, S. E., Patil, C. R. &Rode, C.V. Tandem synthesis of glycidol via transesterification of glycerol with DMC over ba-mixed metal oxide catalysts. ACS Sustainable Chemistry and Engineering 5, 1763–1774 (2017).
22. Darensbourg, D. J. &Yeung, A. D. Kinetics and thermodynamics of the decarboxylation of 1,2-glycerol carbonate to produce glycidol: computational insights. Green Chemistry 16, 247–252 (2014).
23. Algoufi, Y. T., Akpan, U. G., Asif, M. &Hameed, B. H. One-pot synthesis of glycidol from glycerol and dimethyl carbonate over KF/sepiolite catalyst. Applied Catalysis A: General 487, 181–188 (2014).
24. Li, Y., Liu, J. &He, D. Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts. Applied Catalysis A: General 564, 234–242 (2018).
25. Liu, Z. et al. Structure-activity correlations of LiNO3/Mg4AlO5.5 catalysts for glycerol carbonate synthesis from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry 21, 394–399 (2015).
26. Hu, K., Wang, H., Liu, Y. &Yang, C. KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry 28, 334–343 (2015).
27. Rokicki, G., Rakoczy, P., Parzuchowski, P. &Sobiecki, M. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer : glycerol carbonate. Green Chemistry 7, 529–539 (2005).
28. Esteban, J., Domínguez, E., Ladero, M. &Garcia-Ochoa, F. Kinetics of the production of glycerol carbonate by transesterification of glycerol with dimethyl and ethylene carbonate using potassium methoxide, a highly active catalyst. Fuel Processing Technology 138, 243–251 (2015).
29. Khayoon, M. S. &Hameed, B. H. Mg1+xCa1-xO2 as reusable and efficient heterogeneous catalyst for the synthesis of glycerol carbonate via the transesterification of glycerol with dimethyl carbonate. Applied Catalysis A: General 466, 272–281 (2013).
30. Malyaadri, M., Jagadeeswaraiah, K., Sai Prasad, P. S. &Lingaiah, N. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Applied Catalysis A: General 401, 153–157 (2011).
31. Wang, S. et al. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by calcined silicates. Applied Catalysis A: General 542, 174–181 (2017).
32. Ramesh, S., Devred, F., van denBiggelaar, L. &Debecker, D. P. Hydrotalcites Promoted by NaAlO2 as Strongly Basic Catalysts with Record Activity in Glycerol Carbonate Synthesis. ChemCatChem 10, 1398–1405 (2018).
33. Parameswaram, G., Rao, P. S. N., Srivani, A., Rao, G. N. &Lingaiah, N. Magnesia-ceria mixed oxide catalysts for the selective transesterification of glycerol to glycerol carbonate. Molecular Catalysis 451, 135–142 (2018).
34. Bai, R. et al. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Processing Technology 106, 209–214 (2013).
35. Algoufi, Y. T., Akpan, U. G., Kabir, G., Asif, M. &Hameed, B. H. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts. Energy Conversion and Management 138, 183–189 (2017).
36. Kumar, P., With, P., Srivastava, V. C., Gläser, R. &Mishra, I. M. Glycerol Carbonate Synthesis by Hierarchically Structured Catalysts: Catalytic Activity and Characterization. Industrial and Engineering Chemistry Research 54, 1–10 (2015).
37. Ohyama, J., Zhang, Y., Ito, J. &Satsuma, A. Glucose Isomerization Using Alkali Metal and Alkaline Earth Metal Titanates. ChemCatChem 9, 2864–2868 (2017).
38. Santos-Lopez, I. A., Handy, B. E. &Garcia-De-Leon, R. Titanate nanotubes as support of solid base catalyst. Thermochimica Acta 567, 85–92 (2013).
39. Wen, Z., Yu, X., Tu, S. T., Yan, J. &Dahlquist, E. Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresource Technology 101, 9570–9576 (2010).
40. Yahya, N. Y., Ngadi, N., Jusoh, M. &Halim, N. A. A. Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Conversion and Management 129, 275–283 (2016).
41. Hernández-Hipólito, P. et al. Biodiesel production with nanotubular sodium titanate as a catalyst. Catalysis Today 220–222, 4–11 (2014).
42. Marciniuk, L. L., Hammer, P., Pastore, H. O., Schuchardt, U. &Cardoso, D. Sodium titanate as basic catalyst in transesterification reactions. Fuel 118, 48–54 (2014).
43. Hernández-Hipólito, P. et al. Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium. Catalysis Today 250, 187–196 (2015).
44. Madhuvilakku, R. &Piraman, S. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresource Technology 150, 55–59 (2013).
45. Dai, Y. M., Kao, I. H. &Chen, C. C. Evaluating the optimum operating parameters of biodiesel production process from soybean oil using the Li2TiO3 catalyst. Journal of the Taiwan Institute of Chemical Engineers 70, 260–266 (2017).
46. Zheng, Q. et al. Unexpected highly reversible topotactic CO2 sorption/desorption capacity for potassium dititanate. Journal of Materials Chemistry A 4, 12889–12896 (2016).
47. Sánchez-Camacho, P., Romero-ibarra, I. C., Duan, Y. &Pfeiffe, H. Thermodynamic and Kinetic Analyses of the CO2 Chemisorption Mechanism on Na2TiO3 : Experimental and Theoretical Evidences. The Journal of Physical Chemistry C 118, 19822–19832 (2014).
48. Kakihana, M. “ Sol-Gel ” Preparation of High Temperature Superconducting Oxides. Journal of Sol-Gel Science and Technology 6, 7–55 (1996).
49. Niederberger, M. &Pinna, N. Aqueous and Nonaqueous Sol-Gel Chemistry. in Metal Oxide Nanoparticles in organic solvents: synthesis, formations, assembly and application 7–19 (Springer, 2009). doi:10.1007/978-1-84882-671-7_2
50. Danks, A. E., Hall, S. R. &Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Materials Horizons 3, 91–112 (2016).
51. P. Jolivet, J., Henry, M. &Livage, J. Metal oxide chemistry and synthesis: from solution to solid state. (Wiley, 2000).
52. Dimesso, L. Pechini Processes: An Alternate Approach of the Sol-Gel Method, Preparation, Properties, and Applications. in Handbook ofSol-Gel Science and Technology 1067–1088 (Springer International Publishing, 2018). doi:10.1007/978-3-319-32101-1
53. Sunde, T. O. L., Grande, T. &Einarsrud, M.-A. Modified Pechini Synthesis of Oxide Powders and Thin Films. in Handbook of Sol-Gel Science and Technology 1089–1118 (Springer International Publishing, 2018). doi:10.1007/978-3-319-32101-1_130
54. Masato, K. &Masahiro, Y. Synthesis and Characteristics of Complex Multicomponent Oxides Prepared by Polymer Complex Method. Bulletin of the Chemical Society of Japan 72, 1427–1443 (1999).
55. Chen, L., Zhang, S., Wang, L., Xue, D. &Yin, S. Preparation and photocatalytic properties of strontium titanate powders via sol-gel process. Journal of Crystal Growth 311, 746–748 (2009).
56. Behrens, M. &Schlögl, R. X-Ray Diffraction and Small Angle X-Ray Scattering. in Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity (eds. Che, M. &Vedrine, J. C.) 611–653 (Wiley-VCH, 2012). doi:10.1002/9783527645329.ch15
57. Merlin, R., Pinczuk, A. &Weber, W. H. Overview of Phonon Raman Scattering in Solids. in Raman Scattering in Materials Science 1–29 (2000).
58. Turrell, G. The Raman Effect. in Raman Microscopy Developments and Applications (ed. Corset, G. T. and J.) 1–24 (Elsevier B.V., 1996).
59. Robinson, J. W., Frame, E. M. S. &Frame, G. M. Undergraduate Instrumental Analysis. (Marcel Dekker, 2005).
60. Ferraro, J. R., Nakamoto, K. &Brown, C. W. Basic Theory. in Introductory Raman Spectroscopy 1–94 (2003). doi:10.1016/B978-0-12-254105-6.50004-4
61. Fan, F., Feng, Z. &Li, C. Raman and UV-Raman Spectroscopies. in Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity (eds. Che, M. &Vedrine, J. C.) 49–87 (Wiley-VCH, 2012). doi:10.1002/9783527645329.ch2
62. Ferraro, J. R., Nakamoto, K. &Brown, C. W. Instrumentation and Experimental Techniques. in Introductory Raman Spectroscopy 95–146 (Elsevier Science, 2003). doi:10.1016/B978-012254105-6/50005-6
63. Lowell, S., Shields, J. E., Lowell, S. &Shields, J. E. Adsorption mechanism. in Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density 15–57 (Springer, 2004). doi:10.1126/science.63.1635.454-b
64. Raki, V. &Damjanovi, L. Temperature-Programmed Desorption (TPD) Methods. in Calorimetry and Thermal Methods in Catalysis (ed. Auroux, A.) 131–174 (Springer-Verlag Berlin Heidelberg, 2013). doi:10.1007/978-3-642-11954-5
65. Mekki-berrada, A. &Auroux, A. Thermal Methods. in Characterization ofSolid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity (eds. Che, M. &Vedrine, J. C.) 747–852 (Wiley-VCH, 2012).
66. Xiao, Q., Liu, Y., Zhong, Y. &Zhu, W. A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. Journal of Materials Chemistry 21, 3838–3842 (2011).
67. Papp, S. et al. The influence of temperature on the structural behaviour of sodium tri- and hexa-titanates and their protonated forms. Journal of Solid State Chemistry 178, 1614–1619 (2005).
68. Bamberger, C. E., Begun, G. M. &MacDougall, C. S. Raman spectroscopy of potassium titanates. Their synthesis, hydrolytic reactions, and thermal stability. Applied Spectroscopy 44, 30–37 (1990).
69. Ramaraghavulu, R., Buddhudu, S. &Kumar, G. B. Analysis of structural and thermal properties of Li2TiO3 ceramic powders. Ceramics International 37, 1245–1249 (2011).
70. Nakazawa, T. et al. High energy heavy ion induced structural disorder in Li2TiO3. Journal of Nuclear Materials 367-370 B, 1398–1403 (2007).
71. Meng, F. et al. Structures, formation mechanisms, and ion- exchange properties of a-, b-, and g-Na2TiO3. RSC Advances 6, 112625–112633 (2016).
72. Bamberger, C. E. &BEGUN, G. M. Sodium Titanates : Stoichiometry and Raman Spectra. The American Ceramic Society 70, 48–51 (1987).
73. Lacerda, F. et al. Polarized Raman, FTIR, and DFT study of Na2Ti3O7 microcrystals. Journal of Raman Spectroscopy 49, 538–548 (2018).
74. Liu, C., He, M., Lu, X., Zhang, Q. &Xu, Z. Reaction and crystallization mechanism of potassium dititanate fibers synthesized by low-temperature calcination. Crystal Growth and Design 5, 1399–1404 (2005).
75. Wang, Q., Guo, Z. &Chung, J. S. Formation and structural characterization of potassium titanates and the potassium ion exchange property. Materials Research Bulletin 44, 1973–1977 (2009).
76. Dawodu, F. A., Ayodele, O. O., Xin, J. &Zhang, S. Dimethyl carbonate mediated production of biodiesel at different reaction temperatures. Renewable Energy 68, 581–587 (2014).
77. Balachandran, U. &Eror, N. G. Laser-induced Raman scattering in calcium titanate. Solid State Communications 44, 815–818 (1982).
78. Cavalcante, L. S. et al. Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. Chemical Engineering Journal 143, 299–307 (2008).
79. Zheng, H. et al. Raman spectroscopy of B-site order-disorder in CaTiO3-based microwave ceramics. Journal of the European Ceramic Society 23, 2653–2659 (2003).
80. Rabuffetti, F. a. et al. Synthesis-Dependent First-Order Raman Scattering in SrTiO3 Nanocubes at Room Temperature. Chemistry of Materials 20, 5628–5635 (2008).
81. Ogawa, H., Takahashi, S. &Itoi, N. LEPIDOCROCITE POTASSIUM MAGNESIUM TITANATE, METHOD FOR MANUFACTURING THE SAME AND FRCTION MATERAL. (2007).
82. Kim, J.-W. &Lee, H.-G. Thermal and carbothermic decomposition of Na2CO3 and Li2CO3. Metallurgical and Materials Transactions B 32, 17–24 (2001).
83. Singh, D., Reddy, B., Ganesh, A. &Mahajani, S. Zinc/lanthanum mixed-oxide catalyst for the synthesis of glycerol carbonate by transesterification of glycerol. Industrial and Engineering Chemistry Research 53, 18786–18795 (2014).
84. Wu, Y. et al. Synthesis of glycerol carbonate from glycerol and diethyl carbonate over CeO2-CdO catalyst: The role of Ce4+ doped into CdO lattice. Journal of the Taiwan Institute of Chemical Engineers 87, 131–139 (2018).
85. Wu, Y., Song, X., Cai, F. &Xiao, G. Synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce-NiO catalyst: The role of multiphase Ni. Journal of Alloys and Compounds 720, 360–368 (2017).
86. Álvarez, M. G., Plíšková, M., Segarra, A. M., Medina, F. &Figueras, F. Synthesis of glycerol carbonates by transesterification of glycerol in a continuous system using supported hydrotalcites as catalysts. Applied Catalysis B: Environmental 113–114, 212–220 (2012).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77239-
dc.description.abstract將生質柴油製程中過剩的副產物甘油轉換為高經濟價值的化學品,已成為異相觸媒領域中一項蓬勃發展的議題。本研究中,吾人使用溶膠凝膠法中的檸檬酸聚合錯和物法(polymeric citrate complex method,即Pechini method)製備鹼金與鹼土族鈦酸鹽類觸媒,以應用於甘油與碳酸二甲酯(dimethyl carbonate)轉酯化合成碳酸甘油酯(glycerol carbonate)。文中探討之鹼金與鹼土族包含鋰、鈉、鉀、鎂、鈣、鍶,製備所得觸媒材料使用X光粉末繞射儀(powder XRD)、拉曼光譜儀(Raman)、氮氣吸脫附儀 (BET method)、原子吸收光譜儀(AAS)、程溫脫附儀(CO2-TPD)、熱重分析儀(TGA)與場發式掃描電子顯微鏡(FE-SEM)等儀器鑑定,以觀察材料結構、組成與其表面形貌。
經批次的活性篩選測試結果顯示,使用鈦酸鈉與鈦酸鉀之碳酸甘油酯產率可高於50%,但其結構在反應後易衰退;鹼土族鈦酸鹽活性較差(產率普遍低於30%),但其反應後之結構相較前者穩定,而在鹼土族金屬鈦酸鹽類中摻入鹼金族金屬能保有其結構,並大幅度地改善甘油轉化率與碳酸甘油酯產率;以煅燒溫度攝氏700度、鈉:鈣莫爾比0.4:1.0之鈦酸鈣(命名為0.4Na-Ca-Ti-C700)作為觸媒,對甘油轉酯化反應之促進作用最大,推測其活性位置可能來自於煅燒過程中形成的鈉物質。吾人更進一步由催化反應參數-時間、溫度、反應物比例及觸媒添加量尋求最適化之反應條件。取用0.200克之0.4Na-Ca-Ti-C700投入至含有碳酸二甲酯/甘油莫爾比為 4.0之批次反應器,於攝氏75度下反應 2 小時,可獲得產率高達91% 之碳酸甘油酯與93%之甘油轉化率,對碳酸甘油酯之選擇率為98%。
zh_TW
dc.description.abstractThe valorization of surplus glycerol produced from biodiesel industry has become a prosperous issue in the application of heterogeneous catalysts. Herein, we designed a series of novel titanate catalysts for the synthesis of glycerol carbonate from glycerol. The titanates catalysts were prepared via the sol-gel method using polymeric citrate complex route (i.e. Pechini method), and they were evaluated for the transesterification of glycerol with dimethyl carbonate in a batch system. These titanate catalysts were characterized by powder XRD, Raman, AAS, N2 physical adsorption (BET method), temperature-programmed desorption of CO2 (CO2-TPD), TGA, and FE-SEM. The findings in the screening test indicate that applying sodium titanate and potassium titanates obtained YGLC of more than 50%; however, the structures of them were relatively unstable. Moreover, it was revealed that the activity of alkaline metal (Mg, Ca, Sr) titanates with additions of alkali metal (Li, Na, K) were highly improved on the conversion of glycerol (XGLY) and the yield of GLC (YGLC). The sodium promoted calcium titanate with a molar ratio of Na/Ca = 0.4 designated 0.4Na-Ca-Ti-C700 demonstrates the best promotion effect. The active sites might be attributed to the sodium species formed during calcination. The influence of the reaction time, temperature, the molar ratio of reactants (DMC/GLY), and calcination temperature on the catalytic activity of 0.4Na-Ca-Ti-C700 were investigated. The optimized result shows that under the condition of time = 2h, temperature = 75 °C, the molar ratio of DMC/GLY = 4, and amount of catalyst = 0.200 g, the YGLC of ca. 91%, XGLY of 93%, and selectivity of 98% toward GLC were achieved over 0.4Na-Ca-Ti-C700.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:52:17Z (GMT). No. of bitstreams: 1
ntu-108-R06524086-1.pdf: 9427762 bytes, checksum: eacb2f498f824984f578557d8749ee6f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
Table of Contents V
List of Figures IX
List of Tables XVI
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Glycerol: the platform molecule 3
1.2.1 Glycerol Carbonate: a versatile chemical 4
1.2.2 Synthetic strategy of glycerol carbonate 5
1.3 Catalytic mechanism 10
1.3.1 Base-catalysed reaction of glycerol 10
1.3.2 The side reaction: decomposition of glycerol carbonate 11
1.4 Catalyst Development of glycerol transesterification 13
1.4.1 Homogeneous catalyst 13
1.4.2 Heterogeneous catalyst 13
1.4.3 Titanate catalysts 17
1.5 Sol-Gel method 20
Chapter 2 Experimental section 28
2.1 Chemicals 28
2.2 Instruments 29
2.3 Preparation of catalysts: polymeric complex method 30
2.4 Characterization of catalysts 34
2.4.1 Powder X-ray diffraction (powder XRD) 34
2.4.2 Raman spectroscopy 36
2.4.3 Atomic absorption spectroscopy (AAS) 40
2.4.4 Scanning Electron Microscopy (SEM) 40
2.4.5 BET specific surface area 41
2.4.6 Temperature-programmed desorption of CO2 (CO2-TPD) 42
2.4.7 Thermogravimetric Analysis (TGA) 44
2.5 Catalytic testing 46
2.5.1 Screening test (condition: temperature = 75 °C, time = 2 h, amount of catalyst = 0.200 g, molar ratio of DMC/GLY = 4) 46
2.5.2 Optimized study (catalyst: 0.4Na-Ca-Ti-C600, 700, 800) 47
2.6 Product analysis: gas chromatography 49
Chapter 3 Results and discussion 56
3.1 Alkali titanates 56
3.1.1 Activity & reusability of catalyst 56
3.1.2 AAS 57
3.1.3 Powder XRD 58
3.1.4 Raman spectroscopy 62
3.1.5 FE-SEM 67
3.2 Alkaline titanates 70
3.2.1 Activity test 70
3.2.2 Powder XRD 70
3.2.3 Raman spectroscopy 74
3.3 Influence of alkali addition onto Magnesium titanate 77
3.3.1 Activity test 77
3.3.2 Powder XRD 77
3.3.3 Raman spectroscopy 80
3.4 Influence of alkali addition onto Calcium titanate 82
3.4.1 Activity test 82
3.4.2 Powder XRD 83
3.4.3 CO2–TPD of 0.8Na-Ca-Ti-C800 86
3.4.4 TGA-DTA of 0.8Na-Ca-Ti-C800 87
3.5 Influence of alkali addition onto Strontium titanate 88
3.5.1 Activity test & reusability of catalyst 88
3.5.2 AAS 89
3.5.3 Powder XRD 90
3.5.4 Raman spectroscopy 93
3.6 Effect of calcination temperature on the precursor of 0.4Na-Ca-Ti-CX00 95
3.6.1 Activity & reusability of catalyst 95
3.6.2 AAS 96
3.6.3 Powder XRD 97
3.6.4 Raman spectroscopy 99
3.6.5 FE-SEM 100
3.7 Optimization: effect of reaction temperature 102
3.8 Optimization: effect of reaction time 104
3.9 Optimization: effect of DMC-to-GLY molar ratio 106
3.10 Optimization: effect of catalyst amount 108
Chapter 4 Concluding remark 110
4.1 Conclusion 110
4.2 Future work 111
Supplements 112
References 115
-
dc.language.isoen-
dc.title以溶膠-凝膠法製備鈦酸鹽類及其在碳酸甘油酯合成之應用zh_TW
dc.titlePreparation of Titanates via Sol-Gel Method and Its Application to the Synthesis of Glycerol Carbonateen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林進榮;龔仲偉zh_TW
dc.contributor.oralexamcommitteeChin-Jung Lin;Chung-Wei Kungen
dc.subject.keyword甘油轉酯化,碳酸甘油酯,溶膠-凝膠法,異相觸媒,鈦酸鹽類,zh_TW
dc.subject.keywordtransesterification of glycerol,glycerol carbonate,sol-gel method,Pechini method,heterogeneous catalyst,titanates,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU201902515-
dc.rights.note未授權-
dc.date.accepted2019-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
9.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved