Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kuo Lee)
dc.contributor.authorTzu-Han Chaoen
dc.contributor.author趙姿涵zh_TW
dc.date.accessioned2021-07-10T21:52:05Z-
dc.date.available2021-07-10T21:52:05Z-
dc.date.copyright2019-08-29
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citationBanchereau, J. and R. M. Steinman (1998). 'Dendritic cells and the control of immunity.' Nature 392(6673): 245-252.
Belz, G. T. and S. L. Nutt (2012). 'Transcriptional programming of the dendritic cell network.' Nat Rev Immunol 12(2): 101-113.
Chen, Y. L., T. T. Chen, L. M. Pai, J. Wesoly, H. A. Bluyssen and C. K. Lee (2013). 'A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors.' J Exp Med 210(12): 2515-2522.
Cisse, B., M. L. Caton, M. Lehner, T. Maeda, S. Scheu, R. Locksley, D. Holmberg, C. Zweier, N. S. den Hollander, S. G. Kant, W. Holter, A. Rauch, Y. Zhuang and B. Reizis (2008). 'Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.' Cell 135(1): 37-48.
Colonna, M., G. Trinchieri and Y. J. Liu (2004). 'Plasmacytoid dendritic cells in immunity.' Nat Immunol 5(12): 1219-1226.
Gilliet, M., A. Boonstra, C. Paturel, S. Antonenko, X. L. Xu, G. Trinchieri, A. O'Garra and Y. J. Liu (2002). 'The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor.' J Exp Med 195(7): 953-958.
Hacker, C., R. D. Kirsch, X. S. Ju, T. Hieronymus, T. C. Gust, C. Kuhl, T. Jorgas, S. M. Kurz, S. Rose-John, Y. Yokota and M. Zenke (2003). 'Transcriptional profiling identifies Id2 function in dendritic cell development.' Nat Immunol 4(4): 380-386.
Herglotz, J., L. Unrau, F. Hauschildt, M. Fischer, N. Kriebitzsch, M. Alawi, D. Indenbirken, M. Spohn, U. Muller, M. Ziegler, W. Schuh, H. M. Jack and C. Stocking (2016). 'Essential control of early B-cell development by Mef2 transcription factors.' Blood 127(5): 572-581.
Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu and R. M. Steinman (1992). 'Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.' J Exp Med 176(6): 1693-1702.
Li, H. S., C. Y. Yang, K. C. Nallaparaju, H. Zhang, Y. J. Liu, A. W. Goldrath and S. S. Watowich (2012). 'The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development.' Blood 120(22): 4363-4373.
Lin, Q., J. Schwarz, C. Bucana and E. N. Olson (1997). 'Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C.' Science 276(5317): 1404-1407.
Nagasawa, M., H. Schmidlin, M. G. Hazekamp, R. Schotte and B. Blom (2008). 'Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B.' Eur J Immunol 38(9): 2389-2400.
Roundy, K., I. Debnath, P. Pioli, J. Weis and J. Weis (2012). 'Mef2c is required for the development of B cells at multiple points during B cell maturation and for the expression of B cell-specific surface proteins.' Journal of Immunology 188.
Sathe, P., D. Vremec, L. Wu, L. Corcoran and K. Shortman (2013). 'Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells.' Blood 121(1): 11-19.
Sawai, C. M., V. Sisirak, H. S. Ghosh, E. Z. Hou, M. Ceribelli, L. M. Staudt and B. Reizis (2013). 'Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells.' J Exp Med 210(11): 2151-2159.
Watowich, S. S. and Y. J. Liu (2010). 'Mechanisms regulating dendritic cell specification and development.' Immunol Rev 238(1): 76-92.
Wilker, P. R., M. Kohyama, M. M. Sandau, J. C. Albring, O. Nakagawa, J. J. Schwarz and K. M. Murphy (2008). 'Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation.' Nat Immunol 9(6): 603-612.
Zhang, C. L., T. A. McKinsey, S. Chang, C. L. Antos, J. A. Hill and E. N. Olson (2002). 'Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy.' Cell 110(4): 479-488.
Zhang, J., A. Raper, N. Sugita, R. Hingorani, M. Salio, M. J. Palmowski, V. Cerundolo and P. R. Crocker (2006). 'Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors.' Blood 107(9): 3600-3608.
Alcantara-Hernandez, M., R. Leylek, L.E. Wagar, E.G. Engleman, T. Keler, M.P. Marinkovich, M.M. Davis, G.P. Nolan, and J. Idoyaga. 2017. High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity 47:1037-1050 e1036.
Bi, W., C.J. Drake, and J.J. Schwarz. 1999. The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255-267.
Cedile, O., L.O. Jorgensen, I. Frank, A. Wlodarczyk, and T. Owens. 2017. The chemokine receptor CCR2 maintains plasmacytoid dendritic cell homeostasis. Immunol Lett 192:72-78.
Chen, Y.L., T.T. Chen, L.M. Pai, J. Wesoly, H.A. Bluyssen, and C.K. Lee. 2013. A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. J Exp Med 210:2515-2522.
Chopin, M., S.P. Preston, A.T.L. Lun, J. Tellier, G.K. Smyth, M. Pellegrini, G.T. Belz, L.M. Corcoran, J.E. Visvader, L. Wu, and S.L. Nutt. 2016. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Rep 15:866-878.
Cisse, B., M.L. Caton, M. Lehner, T. Maeda, S. Scheu, R. Locksley, D. Holmberg, C. Zweier, N.S. den Hollander, S.G. Kant, W. Holter, A. Rauch, Y. Zhuang, and B. Reizis. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37-48.
Dai, J., N.J. Megjugorac, S.B. Amrute, and P. Fitzgerald-Bocarsly. 2004. Regulation of IFN regulatory factor-7 and IFN-alpha production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells. J Immunol 173:1535-1548.
Gilliet, M., A. Boonstra, C. Paturel, S. Antonenko, X.L. Xu, G. Trinchieri, A. O'Garra, and Y.J. Liu. 2002. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195:953-958.
Hacker, C., R.D. Kirsch, X.S. Ju, T. Hieronymus, T.C. Gust, C. Kuhl, T. Jorgas, S.M. Kurz, S. Rose-John, Y. Yokota, and M. Zenke. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4:380-386.
Herglotz, J., L. Unrau, F. Hauschildt, M. Fischer, N. Kriebitzsch, M. Alawi, D. Indenbirken, M. Spohn, U. Muller, M. Ziegler, W. Schuh, H.M. Jack, and C. Stocking. 2016a. Essential control of early B-cell development by Mef2 transcription factors. Blood 127:572-581.
Herglotz, J., L. Unrau, F. Hauschildt, M. Fischer, N. Kriebitzsch, M. Alawi, D. Indenbirken, M. Spohn, U. Muller, M. Ziegler, W. Schuh, H.M. Jack, and C. Stocking. 2016b. Essential control of early B-cell development by Mef2 transcription factors. Blood 127:572-581.
Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R.M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693-1702.
Lau, C.M., I. Tiniakou, O.A. Perez, M.E. Kirkling, G.S. Yap, H. Hock, and B. Reizis. 2018. Transcription factor Etv6 regulates functional differentiation of cross-presenting classical dendritic cells. J Exp Med 215:2265-2278.
Li, H.S., C.Y. Yang, K.C. Nallaparaju, H. Zhang, Y.J. Liu, A.W. Goldrath, and S.S. Watowich. 2012. The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood 120:4363-4373.
Lin, Q., J. Schwarz, C. Bucana, and E.N. Olson. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404-1407.
Nagasawa, M., H. Schmidlin, M.G. Hazekamp, R. Schotte, and B. Blom. 2008. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur J Immunol 38:2389-2400.
Penna, G., S. Sozzani, and L. Adorini. 2001. Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J Immunol 167:1862-1866.
Puttur, F., C. Arnold-Schrauf, K. Lahl, G. Solmaz, M. Lindenberg, C.T. Mayer, M. Gohmert, M. Swallow, C. van Helt, H. Schmitt, L. Nitschke, B.N. Lambrecht, R. Lang, M. Messerle, and T. Sparwasser. 2013. Absence of Siglec-H in MCMV infection elevates interferon alpha production but does not enhance viral clearance. PLoS Pathog 9:e1003648.
Redecke, V., R. Wu, J. Zhou, D. Finkelstein, V. Chaturvedi, A.A. High, and H. Hacker. 2013. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods 10:795-803.
Reizis, B. 2019. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 50:37-50.
Roundy, K., I. Debnath, P. Pioli, J. Weis, and J. Weis. 2012. Mef2c is required for the development of B cells at multiple points during B cell maturation and for the expression of B cell-specific surface proteins. J Immunol 188:
Sathe, P., D. Vremec, L. Wu, L. Corcoran, and K. Shortman. 2013. Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121:11-19.
Sawai, C.M., V. Sisirak, H.S. Ghosh, E.Z. Hou, M. Ceribelli, L.M. Staudt, and B. Reizis. 2013. Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. J Exp Med 210:2151-2159.
Schmitt, H., S. Sell, J. Koch, M. Seefried, S. Sonnewald, C. Daniel, T.H. Winkler, and L. Nitschke. 2016. Siglec-H protects from virus-triggered severe systemic autoimmunity. J Exp Med 213:1627-1644.
Schwieger, M., A. Schuler, M. Forster, A. Engelmann, M.A. Arnold, R. Delwel, P.J. Valk, J. Lohler, R.K. Slany, E.N. Olson, and C. Stocking. 2009. Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood 114:2476-2488.
Stehling-Sun, S., J. Dade, S.L. Nutt, R.P. DeKoter, and F.D. Camargo. 2009. Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nat Immunol 10:289-296.
Tang, Y., A. Harrington, X. Yang, R.E. Friesel, and L. Liaw. 2010. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis 48:563-567.
Vanbervliet, B., N. Bendriss-Vermare, C. Massacrier, B. Homey, O. de Bouteiller, F. Briere, G. Trinchieri, and C. Caux. 2003. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. J Exp Med 198:823-830.
Watowich, S.S., and Y.J. Liu. 2010. Mechanisms regulating dendritic cell specification and development. Immunol Rev 238:76-92.
Wendland, M., N. Czeloth, N. Mach, B. Malissen, E. Kremmer, O. Pabst, and R. Forster. 2007. CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc Natl Acad Sci U S A 104:6347-6352.
Wilker, P.R., M. Kohyama, M.M. Sandau, J.C. Albring, O. Nakagawa, J.J. Schwarz, and K.M. Murphy. 2008. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 9:603-612.
Wu, J., H. Wu, J. An, C.M. Ballantyne, and J.G. Cyster. 2018. Critical role of integrin CD11c in splenic dendritic cell capture of missing-self CD47 cells to induce adaptive immunity. Proc Natl Acad Sci U S A 115:6786-6791.
Wu, X., C.G. Briseno, G.E. Grajales-Reyes, M. Haldar, A. Iwata, N.M. Kretzer, W. Kc, R. Tussiwand, Y. Higashi, T.L. Murphy, and K.M. Murphy. 2016. Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proc Natl Acad Sci U S A 113:14775-14780.
Zhang, C.L., T.A. McKinsey, S. Chang, C.L. Antos, J.A. Hill, and E.N. Olson. 2002. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479-488.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77234-
dc.description.abstract樹突細胞包括漿狀樹突細胞和典型樹突細胞在先天和適應性免疫反應扮演重要的橋樑。兩種樹突細胞皆能在含有Flt3 ligand的生長環境中從骨髓前驅細胞和淋巴前驅細胞發育而來。典型樹突細胞又可依照表面分子及轉錄因子而細分為cDC1和cDC2兩種,反觀漿狀樹突細胞至今仍是一個異質的混合群體。Mef2c 為一對於心血管和肌肉發四重要的轉錄因子,儘管Mef2c表現量在漿狀樹突細胞內比經典樹突細胞高,但其在樹突細胞發育扮演的角色仍是未知的。在永生化的造血前驅及幹細胞株(immortalized stem and progenitor cell line, iHSPC)中利用CRISPR-Cas9方法剔除Mef2c 只損害漿狀樹突但不影響經典樹突細胞的發育,除此之外,在Mef2c Tie2Cre異合子老鼠中,無論在骨隨、脾臟和淋巴結的漿狀樹突細胞皆減少,同時,由Mef2c Tie2Cre異合子老鼠的淋巴系前驅幹細胞 (common lymphoid progenitor, CLP) 和樹突前驅細胞 (common dendritic cell progenitor, CDP) 培養的漿狀樹突細胞亦減少,此說明Mef2c 調節漿狀細胞的發育具有劑量依賴性。另值得關注的是淋巴結漿狀樹突細胞的缺失來的比骨隨顯著,同時,也觀察到對於漿狀樹突細胞遷徙重要的趨化因子受體CCR2、CCR9和CXCR3下降,說明Mef2c 對成熟漿狀細胞的遷徙具有調節作用。除此之外,在只在後期成熟樹突細胞剔除Mef2c 的CD11cCre老鼠中,我們亦觀察到周邊更顯著漿狀樹突細胞的缺失。更重要的是,在 CCR2 基因剔除的老鼠中,我們觀察到淋巴結的漿狀樹突細胞數下降,說明了CCR2參與了漿狀樹突細胞遷徙至淋巴結的過程。機制層面上,我們發現對於分別對於漿狀樹突細胞發育和遷徙重要的轉錄因子Tcf4和Runx2的啟動子和內含子上有Mef2c的DNA結合序列,其表現量在 Mef2c 基因剔除的永生化造血前驅及幹細胞株皆下降。綜上所述,我們發現了一個全新調控漿狀樹突細胞的發育及移行轉錄因子Mef2c,而其深入的調控機制則有待進一步研究及探討。zh_TW
dc.description.abstractDendritic cells (DCs), including plasmacytoid dendritic cells (pDCs) and classical dendritic cells (cDCs) play a crucial role in bridging the innate and adaptive immunity. While cDCs have been classified into cDC1 and cDC2 based on surface markers and transcription factors during development, pDCs remain heterogeneous. Mef2c is a transcription factor that is known to be critical for cardiac morphogenesis and myogenesis and vascular development. However, despite that Mef2c is preferentially expressed in pDC compared to cDC, its role in pDC development remains unclear. Mef2c KO in an immortalized hematopoietic stem and progenitor cell line (iHSPC) impaired pDC development in vitro. More importantly, Mef2cf/+Tie2Cre heterozygous mice also showed a reduced frequency of pDC, but not cDC, in the BM, spleen and lymph nodes. An impaired pDC development was also observed using Mef2cf/+Tie2Cre CLP or CDP to do in vitro culture, suggesting a dose-dependent requirement of Mef2c for pDC development. Interestingly, the defect in the lymph nodes was even more pronounced than that in BM. Reduced expression of CCR2 CCR9 and CXCR3, indispensable chemokine receptors for egress of pDC from BM to lymph node, was observed, suggesting that Mef2c may be also involved in pDC migration. A similar but more dramatic reduction of pDC frequency was observed in the periphery CD11c-driven deletion of Mef2c in mice in later stage of DC development. Moreover, CCR2 KO also decreased pDC frequency in lymph nodes as opposed to WT control, suggesting a critical role of CCR2 in pDC migration. Mechanistically, Mef2c binding motif is found on promoter/intron of Tcf4 and Runx2, two transcription factors know to be critical for pDC development and migration, respectively. Mef2c KO iHSPCs reduced the expression of these two genes.
In sum, we demonstrate that Mef2c, a novel TFs preferentially expressed in pDC, not only regulate development but also migration of pDCs.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:52:05Z (GMT). No. of bitstreams: 1
ntu-108-R06449008-1.pdf: 5108204 bytes, checksum: 7feb7110e21a1c485f0c8544d4a9080d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter I Introduction 7
1.1 Dendritic cell subsets 8
1.2 Dendritic cell progenitors 9
1.3 The heterogeneity of pDC 9
1.4 Transcription factors and cytokines involved in dendritic cells development 10
1.5 Mef2c 10
1.6 Rationale 11
1.7 Specific aims 11
Chapter II Materials and Methods 12
Chapter III Results 18
3.1 Knockout of Mef2c hampers the development of pDCs in iHSPC 19
3.2 Deficiency of Mef2c impairs the development and migration of pDCs in vivo 20
3.3 Deficiency of Mef2c impairs the development of pDCs from lymphoid but not myeloid progenitors 21
3.4 Deficiency of Mef2c in mature DC decreases the migratory ability of pDC from BM to the periphery 21
3.5 Deficiency of Mef2c decreases the expression of CXCR3, CCR2 and CCR9 on pDCs in vivo 22
3.6 Deficiency of Mef2c in mature DC impairs the expression of CXCR3, CCR9 and CCR2 on pDCs in vivo 22
3.7 CCR2 contributes to migratory ability of pDC from bone marrow to the lymph node 23
3.8 Mef2c positively regulates the expression of Tcf4 and Runx2 23
Chapter IV Discussion 25
4.1 Mef2c regulates development of pDCs but not cDCs 26
4.2 Mef2c has a more significant role in lymphoid progenitors than than myeloid progenitors 27
4.3 Deficiency of Mef2c in mature DC impairs pDC migration and alters the pDC characteristics 27
4.4 Impaired pDC migration in Mef2c deficiency mice correlated with reduced expression of CXCR3, CCR2 and CCR9 expression 28
4.5 CCR2 regulates pDC migration from bone marrow to lymph node 29
4.6 Mef2c may directly expression of Tcf4 and Runx2 and thus control pDC development and migration, respectively 30
Chapter V Reference 32
Chapter VI Figures 40
dc.language.isoen
dc.subject樹突細胞zh_TW
dc.subject漿狀樹突細胞zh_TW
dc.subject轉錄因子Mef2czh_TW
dc.subject趨化受體zh_TW
dc.subjectTranscription factor Mef2cen
dc.subjectchemokine receptoren
dc.subjectplasmacytoid dendritic cellen
dc.subjectdendritic cellen
dc.titleMef2c 轉錄因子調控漿狀樹突細胞的發育及遷徙zh_TW
dc.titleTranscription factor Mef2c regulates the development and migration of plasmacytoid dendritic cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴仲陽(Yen,Jerry J.Y.),張哲逢(Che-Feng chang)
dc.subject.keyword轉錄因子Mef2c,樹突細胞,漿狀樹突細胞,趨化受體,zh_TW
dc.subject.keywordTranscription factor Mef2c,dendritic cell,plasmacytoid dendritic cell,chemokine receptor,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201903629
dc.rights.note未授權
dc.date.accepted2019-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06449008-1.pdf
  未授權公開取用
4.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved