Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游文岳zh_TW
dc.contributor.advisorWen-Yueh Yuen
dc.contributor.author李祐任zh_TW
dc.contributor.authorYou-Ren Lien
dc.date.accessioned2021-07-10T21:51:57Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Hansen, J.; Ruedy, R.; Sato, M.; Lo, K., Global surface temperature change. Reviews of Geophysics 2010, 48 (4).
[2] Liu, M.; Liu, B.; Shi, L.; Wang, F.; Liang, L.; Sun, J., Melamine–ZnI2 as heterogeneous catalysts for efficient chemical fixation of carbon dioxide to cyclic carbonates. RSC Advances 2015, 5 (2), 960-966.
[3] Anwar, M.; Fayyaz, A.; Sohail, N.; Khokhar, M.; Baqar, M.; Khan, W.; Rasool, K.; Rehan, M.; Nizami, A., CO2 capture and storage: A way forward for sustainable environment. Journal of environmental management 2018, 226, 131-144.
[4] Koytsoumpa, E. I.; Bergins, C.; Kakaras, E., The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids 2018, 132, 3-16.
[5] Honda, M.; Tamura, M.; Nakagawa, Y.; Sonehara, S.; Suzuki, K.; Fujimoto, K. i.; Tomishige, K., Ceria‐catalyzed conversion of carbon dioxide into dimethyl carbonate with 2‐cyanopyridine. ChemSusChem 2013, 6 (8), 1341-1344.
[6] Santos, B. A.; Silva, V. M.; Loureiro, J. M.; Rodrigues, A. E., Review for the direct synthesis of dimethyl carbonate. ChemBioEng Reviews 2014, 1 (5), 214-229.
[7] Zhao, T.; Hu, X.; Wu, D.; Li, R.; Yang, G.; Wu, Y., Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant. ChemSusChem 2017, 10 (9), 2046-2052.
[8] Al-Saydeh, S. A.; Zaidi, S. J., Carbon dioxide conversion to methanol: Opportunities and fundamental challenges. In Carbon Dioxide Chemistry, Capture and Oil Recovery, IntechOpen, 2018.
[9] Xie, K.; Zhang, Y.; Meng, G.; Irvine, J. T., Direct synthesis of methane from CO 2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy & Environmental Science 2011, 4 (6), 2218-2222.
[10] Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W., Carbon dioxide utilization via carbonate-promoted C–H carboxylation. Nature 2016, 531 (7593), 215.
[11] Dick, G. R.; Frankhouser, A. D.; Banerjee, A.; Kanan, M. W., A scalable carboxylation route to furan-2,5-dicarboxylic acid. Green Chemistry 2017, 19 (13), 2966-2972.
[12] He, J.; Huang, K.; Barnett, K. J.; Krishna, S. H.; Alonso, D. M.; Brentzel, Z. J.; Burt, S. P.; Walker, T.; Banholzer, W. F.; Maravelias, C. T., New catalytic strategies for α, ω-diols production from lignocellulosic biomass. Faraday discussions 2017, 202, 247-267.
[13] Pacheco, M. A.; Marshall, C. L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy & Fuels 1997, 11 (1), 2-29.
[14] Rogulska, M.; Kultys, A., Aliphatic polycarbonate-based thermoplastic polyurethane elastomers containing diphenyl sulfide units. Journal of Thermal Analysis and Calorimetry 2016, 126 (1), 225-243.
[15] Wu, C.-H.; Chen, L.-Y.; Jeng, R.-J.; Dai, S. A., 100% Atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8964-8975.
[16] Hrdlička, Z.; Kuta, A.; Poręba, R.; Špírková, M., Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties. In Chemical Papers, 2014; Vol. 68, p 233.
[17] Spirkova, M.; Poreba, R.; Pavlicevic, J.; Kobera, L.; Baldrian, J.; Pekarek, M., Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. Journal of Applied Polymer Science 2012, 126 (3), 1016-1030.
[18] Tanaka, H.; Kunimura, M., Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polymer Engineering & Science 2002, 42 (6), 1333-1349.
[19] Wang, Y.; Yi, J.; Peng, X.; Ma, X.; Peng, S., Structure–property relationships of novel fluorinated polycarbonate polyurethane films with high transparency and thermal stability. Research on Chemical Intermediates 2018, 45 (2), 845-862.
[20] Liu, B.; Tian, H.; Zhu, L., Structures and properties of polycarbonate modified polyether-polyurethanes prepared by transurethane polycondensation. Journal of Applied Polymer Science 2015, 132 (46).
[21] Zhu, W.; Huang, X.; Li, C.; Xiao, Y.; Zhang, D.; Guan, G., High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polymer International 2011, 60 (7), 1060-1067.
[22] Foy, E.; Farrell, J. B.; Higginbotham, C. L., Synthesis of linear aliphatic polycarbonate macroglycols using dimethylcarbonate. Journal of Applied Polymer Science 2009, 111 (1), 217-227.
[23] Xu, J.; Feng, E.; Song, J., Renaissance of aliphatic polycarbonates: New techniques and biomedical applications. Journal of Applied Polymer Science 2014, 131 (5).
[24] Ulery, B. D.; Nair, L. S.; Laurencin, C. T., Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics 2011, 49 (12), 832-864.
[25] Edlund, U.; Albertsson, A. C., Degradable polymer microspheres for controlled drug delivery. In Degradable Aliphatic Polyesters, Albertsson, A. C., Ed. Springer-Verlag Berlin: Berlin, 2002; Vol. 157, pp 67-112.
[26] Park, J. H.; Jeon, J. Y.; Lee, J. J.; Jang, Y.; Varghese, J. K.; Lee, B. Y., Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules 2013, 46 (9), 3301-3308.
[27] Song, M.; Yang, X.; Wang, G., Preparation of polycarbonate diols (PCDLs) from dimethyl carbonate (DMC) and diols catalyzed by KNO3/γ-Al2O3. RSC Advances 2018, 8 (61), 35014-35022.
[28] Kim, S.-M.; Park, S.-A.; Hwang, S.; Kim, E.; Jegal, J.; Im, C.; Jeon, H.; Oh, D.; Park, J., Environmentally-friendly synthesis of carbonate-type macrodiols and preparation of transparent self-healable thermoplastic polyurethanes. Polymers 2017, 9 (12).
[29] Sun, J.; Kuckling, D., Synthesis of high-molecular-weight aliphatic polycarbonates by organo-catalysis. Polymer Chemistry 2016, 7 (8), 1642-1649.
[30] Feng, J.; Zhuo, R.-X.; Zhang, X.-Z., Construction of functional aliphatic polycarbonates for biomedical applications. Progress in Polymer Science 2012, 37 (2), 211-236.
[31] Tempelaar, S.; Mespouille, L.; Coulembier, O.; Dubois, P.; Dove, A. P., Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chemical Society Reviews 2013, 42 (3), 1312-36.
[32] D'Alessandro, D. M.; Smit, B.; Long, J. R., Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition 2010, 49 (35), 6058-82.
[33] Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B., Recent advances in CO2/epoxide copolymerization—New strategies and cooperative mechanisms. Coordination Chemistry Reviews 2011, 255 (13-14), 1460-1479.
[34] Trott, G.; Saini, P. K.; Williams, C. K., Catalysts for CO2/epoxide ring-opening copolymerization. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 2016, 374 (2061).
[35] Sugimoto, H.; Kuroda, K., The cobalt porphyrin - Lewis base system: A highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions. Macromolecules 2008, 41 (2), 312-317.
[36] Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S., A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chemistry 2003, 5 (5), 497-507.
[37] Inoue, S.; Koinuma, H.; Tsuruta, T., Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part B: Polymer Letters 1969, 7 (4), 287-292.
[38] Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R., Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Accounts of Chemical Research 2004, 37 (11), 836-844.
[39] Sugimoto, H.; Inoue, S., Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (22), 5561-5573.
[40] Lu, X. B.; Ren, W. M.; Wu, G. P., CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control. Accounts of Chemical Research 2012, 45 (10), 1721-1735.
[41] Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M., Catalysis as an enabling science for sustainable polymers. Chemical Reviews 2018, 118 (2), 839-885.
[42] Oi, S.; Nemoto, K.; Matsuno, S.; Inoue, Y., Direct synthesis of polycarbonates from CO2, diols, and dihalides. Macromolecular Rapid Communications 1994, 15 (2), 133-137.
[43] Chen, Z.; Hadjichristidis, N.; Feng, X.; Gnanou, Y., Cs2CO3-promoted polycondensation of CO2 with diols and dihalides for the synthesis of miscellaneous polycarbonates. Polymer Chemistry 2016, 7 (30), 4944-4952.
[44] Tamura, M.; Ito, K.; Honda, M.; Nakagawa, Y.; Sugimoto, H.; Tomishige, K., Direct copolymerization of CO2 and diols. Scientific Reports 2016, 6, 24038.
[45] Santos, B. A. V.; Silva, V. M. T. M.; Loureiro, J. M.; Rodrigues, A. E., Review for the direct synthesis of dimethyl carbonate. ChemBioEng Reviews 2014, 1 (5), 214-229.
[46] Wu, X. L.; Meng, Y. Z.; Xiao, M.; Lu, Y. X., Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst. Journal of Molecular Catalysis A: Chemical 2006, 249 (1-2), 93-97.
[47] Bian, J.; Xiao, M.; Wang, S.; Wang, X.; Lu, Y.; Meng, Y., Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst. Chemical Engineering Journal 2009, 147 (2-3), 287-296.
[48] Bian, J.; Xiao, M.; Wang, S.; Lu, Y.; Meng, Y., Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu–Ni/AC catalysts. Catalysis Communications 2009, 10 (8), 1142-1145.
[49] Bian, J.; Xiao, M.; Wang, S.-J.; Lu, Y.-X.; Meng, Y.-Z., Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Applied Surface Science 2009, 255 (16), 7188-7196.
[50] Aouissi, A.; Al-Othman, Z. A.; Al-Amro, A., Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co1.5PW12O40 Keggin-type heteropolyanion. International Journal of Molecular Sciences 2010, 11 (4), 1343-51.
[51] Stoian, D. C.; Taboada, E.; Llorca, J.; Molins, E.; Medina, F.; Segarra, A. M., Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg-Al hydrotalcite-silica lyogels. Chemical Communications 2013, 49 (48), 5489-91.
[52] Zhang, M.; Xiao, M.; Wang, S.; Han, D.; Lu, Y.; Meng, Y., Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from Carbon dioxide and methanol. Journal of Cleaner Production 2015, 103, 847-853.
[53] Chen, H.; Wang, S.; Xiao, M.; Han, D.; Lu, Y.; Meng, Y., Direct synthesis of dimethyl carbonate from CO2 and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst. Chinese Journal of Chemical Engineering 2012, 20 (5), 906-913.
[54] Sakakura, T.; Choi, J. C.; Saito, P.; Masuda, T.; Sako, T.; Oriyama, T., Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. The Journal of Organic Chemistry 1999, 64 (12), 4506-4508.
[55] Tomishige, K.; Kunimori, K., Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Applied Catalysis A: General 2002, 237 (1-2), 103-109.
[56] Hong, S. T.; Park, H. S.; Lim, J. S.; Lee, Y. W.; Anpo, M.; Kim, J. D., Synthesis of dimethyl carbonate from methanol and supercritical carbon dioxide. Research on Chemical Intermediates 2006, 32 (8), 737-747.
[57] Honda, M.; Suzuki, A.; Noorjahan, B.; Fujimoto, K.; Suzuki, K.; Tomishige, K., Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chemical Communications 2009, (30), 4596-8.
[58] Honda, M.; Kuno, S.; Sonehara, S.; Fujimoto, K.-i.; Suzuki, K.; Nakagawa, Y.; Tomishige, K., Tandem Carboxylation-hydration reaction system from methanol, CO2 and benzonitrile to dimethyl carbonate and benzamide catalyzed by CeO2. ChemCatChem 2011, 3 (2), 365-370.
[59] Bansode, A.; Urakawa, A., Continuous DMC Synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catalysis 2014, 4 (11), 3877-3880.
[60] Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K., Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. Journal of Catalysis 2014, 318, 95-107.
[61] Wang, S.-P.; Zhou, J.-J.; Zhao, S.-Y.; Zhao, Y.-J.; Ma, X.-B., Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria. Chinese Chemical Letters 2015, 26 (9), 1096-1100.
[62] Liu, J.; Li, Y.; Zhang, J.; He, D., Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Applied Catalysis A: General 2016, 513, 9-18.
[63] Khan, M. E.; Khan, M. M.; Cho, M. H., Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-graphene nanostructures. Scientific Reports 2017, 7 (1), 5928.
[64] Malavasi, L.; Fisher, C. A.; Islam, M. S., Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews 2010, 39 (11), 4370-87.
[65] Choudhury, B.; Choudhury, A., Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Materials Chemistry and Physics 2012, 131 (3), 666-671.
[66] Della Mea, G. B.; Matte, L. P.; Thill, A. S.; Lobato, F. O.; Benvenutti, E. V.; Arenas, L. T.; Jürgensen, A.; Hergenröder, R.; Poletto, F.; Bernardi, F., Tuning the oxygen vacancy population of cerium oxide (CeO2−x, 0 <x<0.5) nanoparticles. Applied Surface Science 2017, 422, 1102-1112.
[67] Tamura, M.; Kishi, R.; Nakagawa, Y.; Tomishige, K., Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers. Nature Communications 2015, 6, 8580.
[68] Tamura, M.; Kishi, R.; Nakayama, A.; Nakagawa, Y.; Hasegawa, J. Y.; Tomishige, K., Formation of a new, strongly basic nitrogen anion by metal oxide modification. Journal of the American Chemical Society 2017, 139 (34), 11857-11867.
[69] Dhall, A.; Self, W., Cerium Oxide Nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants (Basel) 2018, 7 (8).
[70] Lin, K. S.; Chowdhury, S., Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review. International Journal of Molecular Sciences 2010, 11 (9), 3226-51.
[71] Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. The Journal of Physical Chemistry B 2005, 109 (51), 24380-24385.
[72] Si, R.; Flytzani-Stephanopoulos, M., Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angewandte Chemie International Edition 2008, 47 (15), 2884-7.
[73] Li, C.; Sun, Y.; Djerdj, I.; Voepel, P.; Sack, C.-C.; Weller, T.; Ellinghaus, R.; Sann, J.; Guo, Y.; Smarsly, B. M.; Over, H., Shape-Controlled CeO2 Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction. ACS Catalysis 2017, 7 (10), 6453-6463.
[74] Yan, L.; Yu, R.; Chen, J.; Xing, X., Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: Investigation of the morphology evolution. Crystal Growth & Design 2008, 8 (5), 1474-1477.
[75] Zhou, G.; Gui, B.; Xie, H.; Yang, F.; Chen, Y.; Chen, S.; Zheng, X., Influence of CeO2 morphology on the catalytic oxidation of ethanol in air. Journal of Industrial and Engineering Chemistry 2014, 20 (1), 160-165.
[76] Liu, X.; Zhou, K.; Wang, L.; Wang, B.; Li, Y., Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. Journal of the American Chemical Society 2009, 131 (9), 3140-3141.
[77] Wang, S.; Zhao, L.; Wang, W.; Zhao, Y.; Zhang, G.; Ma, X.; Gong, J., Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale 2013, 5 (12), 5582-8.
[78] Fan, T.; Zhang, L.; Jiu, H.; Sun, Y.; Liu, G.; Sun, Y.; Su, Q., Template-free hydrothermal synthesis and characterisation of single crystalline Ce(OH)CO3 and CeO2 with spindle-like structures. Micro & Nano Letters 2010, 5 (4).
[79] McBride, J. R.; Hass, K. C.; Poindexter, B. D.; Weber, W. H., Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics 1994, 76 (4), 2435-2441.
[80] Song, Z.; Liu, W.; Nishiguchi, H.; Takami, A.; Nagaoka, K.; Takita, Y., The Pr promotion effect on oxygen storage capacity of Ce–Pr oxides studied using a TAP reactor. Applied Catalysis A: General 2007, 329, 86-92.
[81] Li, L.; Hu, G.-S.; Lu, J.; Luo, M.-F., Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy. 2012; Vol. 28.
[82] Li, L.; Chen, F.; Lu, J. Q.; Luo, M. F., Study of defect sites in Ce1-xMxO2-delta (x = 0.2) solid solutions using Raman spectroscopy. The Journal of Physical Chemistry A 2011, 115 (27), 7972-7.
[83] He, H.; Dai, H. X.; Au, C. T., Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catalysis Today 2004, 90 (3-4), 245-254.
[84] Xiao, G.; Li, S.; Li, H.; Chen, L., Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. Microporous and Mesoporous Materials 2009, 120 (3), 426-431.
[85] Hennings, U.; Reimert, R., Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas. Applied Catalysis A: General 2007, 325 (1), 41-49.
[86] Stoian, D.; Medina, F.; Urakawa, A., Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine. ACS Catalysis 2018, 8 (4), 3181-3193.
[87] Li, M.; Tumuluri, U.; Wu, Z.; Dai, S., Effect of dopants on the adsorption of carbon dioxide on ceria surfaces. ChemSusChem 2015, 8 (21), 3651-60.
[88] Liu, B.; Li, C.; Zhang, G.; Yao, X.; Chuang, S. S. C.; Li, Z., Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis 2018, 8 (11), 10446-10456.
[89] Ren, J.; Liu, X.; Gao, R.; Dai, W.-L., Morphology and crystal-plane effects of Zr-doped CeO2 nanocrystals on the epoxidation of styrene with tert-butylhydroperoxide as the oxidant. Journal of Energy Chemistry 2017, 26 (4), 681-687.
[90] Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical society 1951, 73 (1), 373-380.
[91] De Keijser, T. H.; Langford, J.; Mittemeijer, E. J.; Vogels, A., Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. Journal of Applied Crystallography 1982, 15 (3), 308-314.
[92] Daniel, M.; Loridant, S., Probing reoxidation sites by in situ Raman spectroscopy: differences between reduced CeO2 and Pt/CeO2. Journal of Raman Spectroscopy 2012, 43 (9), 1312-1319.
[93] Lee, M. A Raman study of CeO2 nanomaterials with different morphologies. Friedrich-Alexander Universität Erlangen-Nürnberg, 2017.
[94] Filtschew, A.; Hofmann, K.; Hess, C., Ceria and its defect structure: New insights from a combined spectroscopic approach. The Journal of Physical Chemistry C 2016, 120 (12), 6694-6703.
[95] Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M. V. n., Raman spectra of polycrystalline CeO2: a density functional theory study. The Journal of Physical Chemistry C 2017, 121 (38), 20834-20849.
[96] Schilling, C.; Ganduglia-Pirovano, M. V.; Hess, C., Experimental and theoretical study on the nature of adsorbed oxygen species on shaped ceria nanoparticles. The journal of physical chemistry letters 2018, 9 (22), 6593-6598.
[97] Spanier, J. E.; Robinson, R. D.; Zhang, F.; Chan, S.-W.; Herman, I. P., Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Physical Review B 2001, 64 (24), 245407.
[98] Matović, B.; Dukić, J.; Babić, B.; Bučevac, D.; Dohčević-Mitrović, Z.; Radović, M.; Bošković, S., Synthesis, calcination and characterization of Nanosized ceria powders by self-propagating room temperature method. Ceramics International 2013, 39 (5), 5007-5012.
[99] Kumar, S.; Srivastava, M.; Singh, J.; Layek, S.; Yashpal, M.; Materny, A.; Ojha, A. K., Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles. AIP Advances 2015, 5 (2), 027109.
[100] Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K., CO oxidation by Pd supported on CeO2 (100) and CeO2 (111) facets. Applied Catalysis B: Environmental 2019, 243, 36-46.
[101] Ta, N.; Liu, J.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A.; Shen, W., Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. Journal of the American Chemical Society 2012, 134 (51), 20585-20588.
[102] Chen, S.; Cao, T.; Gao, Y.; Li, D.; Xiong, F.; Huang, W., Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption. The Journal of Physical Chemistry C 2016, 120 (38), 21472-21485.
[103] Fuensanta, M.; Jofre-Reche, J. A.; Rodríguez-Llansola, F.; Costa, V.; Iglesias, J. I.; Martín-Martínez, J. M., Structural characterization of polyurethane ureas and waterborne polyurethane urea dispersions made with mixtures of polyester polyol and polycarbonate diol. Progress in Organic Coatings 2017, 112, 141-152.
[104] Pu, Z.-Y.; Liu, X.-S.; Jia, A.-P.; Xie, Y.-L.; Lu, J.-Q.; Luo, M.-F., Enhanced activity for CO oxidation over Pr-and Cu-doped CeO2 catalysts: effect of oxygen vacancies. The Journal of Physical Chemistry C 2008, 112 (38), 15045-15051.
[105] Westermann, A.; Geantet, C.; Vernoux, P.; Loridant, S., Defects band enhanced by resonance Raman effect in praseodymium doped CeO2. Journal of Raman Spectroscopy 2016, 47 (10), 1276-1279.
[106] Prasad, D. H.; Park, S.; Ji, H.-I.; Kim, H.-R.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H., Structural characterization and catalytic activity of Ce0.65Zr0.25RE0.1O2−δ nanocrystalline powders synthesized by the glycine-nitrate process. The Journal of Physical Chemistry C 2012, 116 (5), 3467-3476.
[107] Sudarsanam, P.; Mallesham, B.; Reddy, P. S.; Großmann, D.; Grünert, W.; Reddy, B. M., Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Applied Catalysis B: Environmental 2014, 144, 900-908.
[108] Piumetti, M.; Bensaid, S.; Andana, T.; Russo, N.; Pirone, R.; Fino, D., Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: from powder catalysts to structured reactors. Applied Catalysis B: Environmental 2017, 205, 455-468.
[109] Xu, J.; Ji, W.; Shen, Z.; Li, W.; Tang, S.; Ye, X.; Jia, D.; Xin, X., Raman spectra of CuO nanocrystals. Journal of Raman spectroscopy 1999, 30 (5), 413-415.
[110] Debbichi, L.; Marco de Lucas, M.; Pierson, J.; Kruger, P., Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. The Journal of Physical Chemistry C 2012, 116 (18), 10232-10237.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77231-
dc.description.abstract近年來,二氧化碳排放隨著化石燃料的燃燒及石油化學品的開發而日漸增加。以二氧化碳及生物質衍生物二元醇直接合成生物可降解的聚碳酸酯,為兼具二氧化碳再利用及高環境效益的綠色反應。
本研究第一階段以水熱法製備具棒狀(Nanorod, NR)及立方體(Nanocube, NC)結晶形貌的奈米氧化鈰,並與市售的奈米級(Nanoparticle, NP)及半微米級(Submicroparticle, SMP)氧化鈰作比較,探討不同結晶形貌氧化鈰對反應活性的影響。
研究結果顯示,粒徑較大的NC及SMP因比表面積小,表面的活性位點較少而不易使CO2吸附於觸媒表面,不利於聚碳酸酯合成;NR及NP的比表面積較大,其中,NR又因表面具有更多的氧空缺位,可助CO2以Bidentate Carbonate (BC)及Hydrogen Carbonate (HC)結構吸附於觸媒表面,促進催化聚碳酸酯寡聚物的合成,有最佳的97% 1,4-丁二醇轉化率及1.11 g聚碳酸酯寡聚物產量。
本研究第二階段以與Ce4+:(a)不同離子半徑的Zr,(b)不同離子價態的La及Pr及(c)離子半徑、價態皆不同的Cu四種金屬摻雜於NR內,探討摻雜不同金屬於NR後對氧空缺濃度的提升及反應活性的影響。
研究結果顯示,四種金屬摻雜後皆能提升NR的氧空缺濃度。摻雜Zr後,CO2僅以BC結構吸附於觸媒表面,降低了CO2吸附時的立體障礙及競爭吸附而使寡聚物產量些微提升至1.18 g;摻雜La及Pr後CO2的吸附行為不變,但吸附強度增加而抑制聚合反應發生,寡聚物產量降至0.74 g (La)及0.64 g (Pr);摻雜Cu後形成部分Cu及CuO散佈於表面,造成CO2吸附時產生立體障礙及競爭吸附,伴隨吸附強度增加而使寡聚物產量大幅下降至0.10 g。
zh_TW
dc.description.abstractIn recent years, carbon dioxide emission is proportional to burning of fossil fuels and the development of petrochemicals. Direct synthesis of biodegradable polycarbonate from carbon dioxide and biomass derivative diols is a green process with high environmental benefits.
In the first stage of this work, cerium oxide with nanorod (NR) and nanocube (NC) morphology were prepared by hydrothermal method and compared with commercial cerium oxide nanoparticle (NP) and submicroparticle (SMP). Investigating the effect of different morphology of cerium oxide on the activity.
The results show that NC and SMP with large crystalline size have low specific surface area and less active sites on the surface, which are hard to activate CO2 and synthesize polycarbonate; NR and NP have relatively high specific area, among them, CO2 can adsorb as Bidentate Carbonate (BC) and Hydrogen Carbonate (HC) structure on NR surface due to the more oxygen vacancy in the NR structure, which can promote polycarbonate synthesis and has the best 97% 1,4-butanediol conversion and 1.11 g polycarbonate yield.
In the second stage of this work, we doped Zr (different ion radius with Ce4+), La and Pr (different ion valence with Ce4+), and Cu (both different ion radius and valence with Ce4+) in NR structure. Investigating the promotion of oxygen vacancy concentration and the activity of polycarbonate synthesis after doping.
The results show that NR doped with Zr, La, Pr or Cu can enhance oxygen vacancy concentration in the structure. After Zr doping, CO2 only adsorbed on the surface as BC structure which may reduce the steric hindrance and competitive adsorption. Slightly increasing the oligomer yield to 1.18 g; After La and Pr doping, the adsorption structure of CO2 on the surface was unchanged. The adsorption strength increased which inhibited polycarbonate synthesis. Decreasing the oligomer yield to 0.74 g (in La doping case) and 0.64 g (in Pr doping case); After Cu doping, Cu and CuO may disperse on the surface. Result in steric hindrance and competitive adsorption while CO2 adsorption. Nevertheless, the adsorption strength also increased after Cu doping. Dramatically decreasing the oligomer yield to 0.10 g.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:51:57Z (GMT). No. of bitstreams: 1
ntu-108-R06524065-1.pdf: 7316925 bytes, checksum: fd5c856d0f76a49fe61be2fb1a26eaab (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 研究背景 1
1-1-1 二氧化碳及全球暖化 1
1-1-2 二元醇及生質廢棄資源 3
1-1-3 聚碳酸酯及其應用 4
1-2 反應介紹 6
1-2-1 脂肪族聚碳酸酯合成技術 6
1-2-2 以二氧化碳與二元醇合成脂肪族聚碳酸酯 9
1-3 觸媒介紹 14
1-3-1 二氧化碳與醇類反應之觸媒發展 14
1-3-2 氧化鈰及2-氰基吡啶 16
1-3-3 氧化鈰製備-奈米結晶形貌 18
1-3-4 氧化鈰製備-金屬改質 20
1-4 研究目標 22
第二章 實驗方法 24
2-1 實驗藥品 24
2-2 觸媒製備 25
2-2-1 以水熱法合成具結晶形貌的奈米氧化鈰 25
2-2-2 以金屬改質奈米氧化鈰 26
2-3 催化反應 28
2-3-1 二氧化碳與二元醇合成脂肪族聚碳酸酯 28
2-3-2 產物分離及純化方法 28
2-4 觸媒鑑定 30
2-4-1 掃描式電子顯微鏡 (SEM) 30
2-4-2 穿透式電子顯微鏡 (TEM) 30
2-4-3 比表面積及孔隙分佈測定儀 (ASAP) 31
2-4-4 X光繞射儀 (XRD) 33
2-4-5 拉曼光譜儀 (Raman) 35
2-4-6 X光光電子能譜儀 (XPS) 35
2-4-7 二氧化碳程溫脫附儀 (CO2-TPD) 36
2-4-8 傅立葉轉換紅外線光譜儀 (FTIR) 37
2-4-9 熱重分析儀 (TGA) 38
2-5 產物鑑定 39
2-5-1 氣相層析儀 (GC) 39
2-5-2 凝膠層析儀 (GPC) 40
2-5-3 傅立葉轉換紅外線光譜儀 (FTIR) 41
2-5-4 核磁共振光譜儀 (NMR) 41
2-5-5 基質輔助雷射脫附游離飛行時間質譜儀 (MALDI-TOF) 42
2-5-6 熱重分析儀 (TGA) 42
2-5-7 示差掃描熱量分析儀 (DSC) 43
第三章 結果與討論 44
3-1 以水熱法合成具結晶形貌奈米氧化鈰對反應活性的影響 44
3-1-1 觸媒FESEM圖 44
3-1-2 觸媒FETEM圖 46
3-1-3 觸媒ASAP結果 47
3-1-4 觸媒XRD結果 49
3-1-5 觸媒Raman結果 52
3-1-6 觸媒XPS結果 55
3-1-7 觸媒CO2-TPD結果 57
3-1-8 觸媒CO2-DRIFTS結果 58
3-1-9 活性測試 63
3-1-10 GPC結果 65
3-1-11 產物ATR-IR結果 67
3-1-12 產物1H NMR結果 70
3-1-13 產物MALDI-TOF結果 73
3-1-14 產物TGA結果 75
3-1-15 產物DSC結果 76
3-1-16 反應後觸媒TGA結果 77
第四章 結果與討論 78
4-1 以金屬摻雜奈米棒氧化鈰對反應活性的影響 78
4-1-1 觸媒FESEM圖及EDS結果 78
4-1-2 觸媒FETEM圖 81
4-1-3 觸媒XRD 結果 83
4-1-4 觸媒Raman結果 86
4-1-5 觸媒CO2-DRIFTS結果 89
4-1-6 活性測試 93
4-1-7 產物GPC結果 95
4-1-8 產物ATR-IR結果 96
4-1-9 產物1H NMR結果 97
第五章 結論 99
第六章 未來展望 101
附錄 102
參考文獻 109
-
dc.language.isozh_TW-
dc.subject聚碳酸酯zh_TW
dc.subject氧化鈰zh_TW
dc.subject水熱法zh_TW
dc.subject結晶形貌zh_TW
dc.subject氧空缺zh_TW
dc.subject摻雜zh_TW
dc.subject吸附行為zh_TW
dc.subject銅zh_TW
dc.subject鋯zh_TW
dc.subject鑭zh_TW
dc.subject鐠zh_TW
dc.subject原位鑑定zh_TW
dc.subject二氧化碳zh_TW
dc.subjectlanthanumen
dc.subjectcarbon dioxideen
dc.subjectpolycarbonateen
dc.subjectcerium oxideen
dc.subjecthydrothermal methoden
dc.subjectmorphologyen
dc.subjectoxygen vacancyen
dc.subjectin-situ characterizationen
dc.subjectadsorption behavioren
dc.subjectzirconiumen
dc.subjectpraseodymiumen
dc.subjectcopperen
dc.subjectdopingen
dc.title製備氧化鈰觸媒應用於二氧化碳與二元醇直接合成聚碳酸酯zh_TW
dc.titlePreparation of Cerium Oxide Catalysts for Direct Synthesis of Polycarbonates from Carbon Dioxide and Diolsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee談駿嵩;吳紀聖zh_TW
dc.contributor.oralexamcommitteeChung-Sung Tan;Chi-Sheng Wuen
dc.subject.keyword二氧化碳,聚碳酸酯,氧化鈰,水熱法,結晶形貌,氧空缺,原位鑑定,吸附行為,鋯,鑭,鐠,銅,摻雜,zh_TW
dc.subject.keywordcarbon dioxide,polycarbonate,cerium oxide,hydrothermal method,morphology,oxygen vacancy,in-situ characterization,adsorption behavior,zirconium,lanthanum,praseodymium,copper,doping,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU201903427-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
7.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved