請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77229完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | zh_TW |
| dc.contributor.advisor | Chih-I Wu | en |
| dc.contributor.author | 林姿均 | zh_TW |
| dc.contributor.author | Tzu-Chun Lin | en |
| dc.date.accessioned | 2021-07-10T21:51:52Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] G. Konstantatos, "Current status and technological prospect of photodetectors based on two-dimensional materials," Nat Commun, vol. 9, no. 1, p. 5266, Dec 10 2018, doi:10.1038/s41467-018-07643-7.
[2] G. Konstantatos and E. H. Sargent, "Nanostructured materials for photon detection,"Nat Nanotechnol, vol. 5, no. 6, pp. 391-400, Jun 2010, doi: 10.1038/nnano.2010.78. [3] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini,"Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nat Nanotechnol, vol. 9, no. 10, pp. 780-93, Oct 2014, doi:10.1038/nnano.2014.215. [4] M. Buscema et al., "Photocurrent generation with two-dimensional van der Waals semiconductors," Chem Soc Rev, vol. 44, no. 11, pp. 3691-718, Jun 7 2015, doi:10.1039/c5cs00106d. [5] M. Long, P. Wang, H. Fang, and W. Hu, "Progress, Challenges, and Opportunities for 2D Material Based Photodetectors," Advanced Functional Materials, vol. 29, no. 19,2018, doi: 10.1002/adfm.201803807. [6] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos,"Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors," Adv Mater, vol. 27, no. 1, pp.176-80, Jan 7 2015, doi: 10.1002/adma.201402471. [7] V. Malgras, A. Nattestad, J. H. Kim, S. X. Dou, and Y. Yamauchi, "Understanding chemically processed solar cells based on quantum dots," Sci Technol Adv Mater, vol. 18,no. 1, pp. 334-350, 2017, doi: 10.1080/14686996.2017.1317219. [8] A. C. Berends and C. de Mello Donega, "Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit," J Phys Chem Lett, vol. 8, no. 17, pp. 4077-4090, Sep 7 2017, doi:6210.1021/acs.jpclett.7b01640. [9] A. J. Nozik, "Multiple exciton generation in semiconductor quantum dots,"Chemical Physics Letters, vol. 457, no. 1-3, pp. 3-11, 2008, doi:10.1016/j.cplett.2008.03.094. [10] R. D. Schaller and V. I. Klimov, "High efficiency carrier multiplication in PbSenanocrystals: implications for solar energy conversion," Phys Rev Lett, vol. 92, no. 18, p.186601, May 7 2004, doi: 10.1103/PhysRevLett.92.186601. [11] R. Saran and R. J. Curry, "Lead sulphide nanocrystal photodetector technologies,"Nature Photonics, vol. 10, no. 2, pp. 81-92, 2016, doi: 10.1038/nphoton.2015.280. [12] G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent,"Colloidal Quantum Dot Solar Cells," Chem Rev, vol. 115, no. 23, pp. 12732-63, Dec 92015, doi: 10.1021/acs.chemrev.5b00063. [13] J. Tang et al., "Colloidal-quantum-dot photovoltaics using atomic-ligand passivation," Nat Mater, vol. 10, no. 10, pp. 765-71, Oct 2011, doi: 10.1038/nmat3118. [14] Y. Liu et al., "Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids," Nano Lett, vol. 10, no. 5, pp. 1960-9, May 12 2010, doi:10.1021/nl101284k. [15] P. R. Brown et al., "Energy Level Modification in Lead Sulfide Quantum Dot ThinFilms through Ligand Exchange," ACS Nano, vol. 8, no. 6, pp. 5863-5872, 2014, doi:10.1021/nn500897c. [16] R. Wang, Y. Shang, P. Kanjanaboos, W. Zhou, Z. Ning, and E. H. Sargent, "Colloidal quantum dot ligand engineering for high performance solar cells," Energy & Environmental Science, vol. 9, no. 4, pp. 1130-1143, 2016, doi: 10.1039/c5ee03887a.[17] G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, "Sensitive solutionprocessed visible-wavelength photodetectors," Nature Photonics, vol. 1, no. 9, pp. 531-63534, 2007, doi: 10.1038/nphoton.2007.147. [18] L. Gao et al., "Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film," Applied Physics Letters, vol. 105, no.15, 2014, doi: 10.1063/1.4898680. [19] J. He et al., "Synergetic Effect of Silver Nanocrystals Applied in PbS ColloidalQuantum Dots for High-Performance Infrared Photodetectors," ACS Photonics, vol. 1,no. 10, pp. 936-943, 2014, doi: 10.1021/ph500227u. [20] C. Hu et al., "Air-stable short-wave infrared PbS colloidal quantum dotphotoconductors passivated with Al2O3 atomic layer deposition," Applied Physics Letters,vol. 105, no. 17, 2014, doi: 10.1063/1.4900930. [21] V. Adinolfi, I. Kramer, L. A. J., B. R. Sutherland, S. Hoogland, and E. H. Sargent,"Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot AbsorberChannel Layer," ACS Nano, vol. 9, no. 1, pp. 356-362, 2015, doi: 10.1021/nn5053537. [22] A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, and S. Foglia, "PbS ColloidalQuantum Dot Photodetectors operating in the near infrared," Sci Rep, vol. 6, p. 37913,Nov 25 2016, doi: 10.1038/srep37913. [23] Y. Wei et al., "Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with LowDark Current and High Detectivity," Advanced Functional Materials, vol. 28, no. 11,2018, doi: 10.1002/adfm.201706690. [24] K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films,"Science, vol. 306, no. 5696, pp. 666-669, 2004, doi: 10.1126/science.1102896. [25] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,"The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp.109-162, 2009, doi: 10.1103/RevModPhys.81.109. [26] Y. Wu, D. B. Farmer, F. Xia, and P. Avouris, "Graphene Electronics: Materials,64Devices, and Circuits," Proceedings of the IEEE, vol. 101, no. 7, pp. 1620-1637, 2013,doi: 10.1109/jproc.2013.2260311. [27] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsicperformance limits of graphene devices on SiO2," Nat Nanotechnol, vol. 3, no. 4, pp. 206-9, Apr 2008, doi: 10.1038/nnano.2008.58. [28] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6,pp. 183-191, 2007, doi: 10.1038/nmat1849. [29] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layerMoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011, doi:10.1038/nnano.2010.279. [30] A. Kumar and P. K. Ahluwalia, "Electronic structure of transition metaldichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory:new direct band gap semiconductors," The European Physical Journal B, vol. 85, no. 6,2012, doi: 10.1140/epjb/e2012-30070-x. [31] Z. Yang, J. Dou, and M. Wang, "Graphene, Transition Metal Dichalcogenides, andPerovskite Photodetectors," Two-dimensional Materials for Photodetector, 2018, doi:10.5772/intechopen.74021. [32] M. Bernardi, M. Palummo, and J. C. Grossman, "Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,"Nano Lett, vol. 13, no. 8, pp. 3664-70, Aug 14 2013, doi: 10.1021/nl401544y. [33] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector," Nat Nanotechnol, vol. 4, no. 12, pp. 839-43, Dec 2009, doi:10.1038/nnano.2009.292. [34] M. Mittendorff et al., "Ultrafast graphene-based broadband THz detector," Applied Physics Letters, vol. 103, no. 2, 2013, doi: 10.1063/1.4813621.65 [35] W. Zhang, J. K. Huang, C. H. Chen, Y. H. Chang, Y. J. Cheng, and L. J. Li, "Highgain phototransistors based on a CVD MoS2 monolayer," Adv Mater, vol. 25, no. 25, pp.3456-61, Jul 5 2013, doi: 10.1002/adma.201301244. [36] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitivephotodetectors based on monolayer MoS2," Nat Nanotechnol, vol. 8, no. 7, pp. 497-501,Jul 2013, doi: 10.1038/nnano.2013.100. [37] W. Tang et al., "MoS2 nanosheet photodetectors with ultrafast response," AppliedPhysics Letters, vol. 111, no. 15, 2017, doi: 10.1063/1.5001671. [38] G. Konstantatos et al., "Hybrid graphene-quantum dot phototransistors withultrahigh gain," Nat Nanotechnol, vol. 7, no. 6, pp. 363-8, May 6 2012, doi:10.1038/nnano.2012.60. [39] W. Guo, S. Xu, Z. Wu, N. Wang, M. M. Loy, and S. Du, "Oxygen-assisted chargetransfer between ZnO quantum dots and graphene," Small, vol. 9, no. 18, pp. 3031-6, Sep23 2013, doi: 10.1002/smll.201202855. [40] A. A. Bessonov et al., "Compound Quantum Dot-Perovskite Optical Absorbers onGraphene Enhancing Short-Wave Infrared Photodetection," ACS Nano, vol. 11, no. 6, pp.5547-5557, Jun 27 2017, doi: 10.1021/acsnano.7b00760. [41] Y. Wang et al., "Hybrid Graphene-Perovskite Phototransistors with UltrahighResponsivity and Gain," Advanced Optical Materials, vol. 3, no. 10, pp. 1389-1396, 2015,doi: 10.1002/adom.201500150. [42] P.-H. Chang et al., "Highly Sensitive Graphene–Semiconducting Polymer HybridPhotodetectors with Millisecond Response Time," ACS Photonics, vol. 4, no. 9, pp. 2335-2344, 2017, doi: 10.1021/acsphotonics.7b00626. [43] P.-H. Chang, C.-S. Li, F.-Y. Fu, K.-Y. Huang, A.-S. Chou, and C.-I. Wu,"Ultrasensitive Photoresponsive Devices Based on Graphene/BiI3 van der Waals66Epitaxial Heterostructures," Advanced Functional Materials, vol. 28, no. 23, 2018, doi:10.1002/adfm.201800179. [44] D.-H. Kang et al., "High-Performance Transition Metal DichalcogenidePhotodetectors Enhanced by Self-Assembled Monolayer Doping," Advanced FunctionalMaterials, vol. 25, pp. 4219-4227, 2015, doi: 10.1002/adfm.201501170. [45] C. Chen et al., "Highly responsive MoS2 photodetectors enhanced by graphenequantum dots," Sci Rep, vol. 5, p. 11830, Jul 3 2015, doi: 10.1038/srep11830. [46] D. H. Kang et al., "An Ultrahigh-Performance Photodetector based on a Perovskite-Transition-Metal-Dichalcogenide Hybrid Structure," Adv Mater, vol. 28, no. 35, pp. 7799-806, Sep 2016, doi: 10.1002/adma.201600992. [47] C. H. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, "Improved performanceand stability in quantum dot solar cells through band alignment engineering," Nat Mater,vol. 13, no. 8, pp. 796-801, Aug 2014, doi: 10.1038/nmat3984. [48] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, "Raman spectroscopy andcoherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletalcells and skeletal regeneration," J R Soc Interface, vol. 13, no. 118, May 2016, doi:10.1098/rsif.2016.0182. [49] J. J. Choi et al., "Photogenerated exciton dissociation in highly coupled lead saltnanocrystal assemblies," Nano Lett, vol. 10, no. 5, pp. 1805-11, May 12 2010, doi:10.1021/nl100498e. [50] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Ramanspectroscopy in graphene," Physics Reports, vol. 473, no. 5-6, pp. 51-87, 2009, doi:10.1016/j.physrep.2009.02.003. [51] M. C. Weidman, K. G. Yager, and W. A. Tisdale, "Interparticle Spacing andStructural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand67Exchange," Chemistry of Materials, vol. 27, no. 2, pp. 474-482, 2014, doi:10.1021/cm503626s. [52] K. S. Jeong et al., "Enhanced Mobility-Lifetime Products in PbS Colloidal QuantumDot Photovoltaics," ACS Nano, vol. 6, no. 1, pp. 89-99, 2012, doi: 10.1021/nn2039164. [53] Y. Lee et al., "High-performance perovskite-graphene hybrid photodetector," AdvMater, vol. 27, no. 1, pp. 41-6, Jan 7 2015, doi: 10.1002/adma.201402271. [54] Q. Li, Y. Zhao, C. Ling, S. Yuan, Q. Chen, and J. Wang, "Towards a ComprehensiveUnderstanding of the Reaction Mechanisms Between Defective MoS2 and ThiolMolecules," Angew Chem Int Ed Engl, vol. 56, no. 35, pp. 10501-10505, Aug 21 2017,doi: 10.1002/anie.201706038. [55] D. M. Sim et al., "Controlled Doping of Vacancy-Containing Few-Layer MoS2 viaHighly Stable Thiol-Based Molecular Chemisorption," ACS Nano, vol. 9, no. 12, pp.12115-12123, 2015, doi: 10.1021/acsnano.5b05173. [56] H. Li et al., "From Bulk to Monolayer MoS2: Evolution of Raman Scattering,"Advanced Functional Materials, vol. 22, no. 7, pp. 1385-1390, 2012, doi:10.1002/adfm.201102111. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77229 | - |
| dc.description.abstract | 本論文主要探討PbS 量子點結合二維材料之混合型光偵測器,藉由量子點的高吸收結合二維材料的高載子遷移率,來達到高響應率的光偵測器,而不同配體置換的PbS 量子點也會影響量子點與二維材料之間的載子傳輸。
第一部份探討了不同配體置換的量子點與石墨烯混合型光偵測器,首先我們要對PbS 量子點進行配體置換,由於量子點在合成過程中會加入長碳鏈油酸避免量子點彼此聚集,而長碳鏈油酸會阻礙量子點間的載子傳導,因此以短配體置換油酸以增加其導電性,藉由傅氏轉換紅外光譜(FTIR)和X 射線光電子能譜(XPS)驗證是否將油酸完全置換成短配體,且不同短配體的置換會造成真空能階的偏移,因此對於石墨烯會有不同的摻雜效應,因此在光偵測器上的表現有所差異。以MPA、TBAI、EDT、PbI2 這四種配體做修飾,實驗結果得到以MPA 置換的元件(PbS_MPA/graphene)表現最好,其響應率可達5.36 × 106A/W。 第二部分則是以 PbS 量子點結合二硫化鉬 (MoS2) 的混合型光偵測器,以單純化學氣相沉積法所成長的單層MoS2 在成長過程中產生較多的硫缺陷,使光偵測器在響應時間上表現得較慢,而我們以硫醇分子置換PbS 量子點同時硫醇分子也能填補MoS2 的缺陷,使元件響應時間變快;不只改善了響應時間,同時高吸收的量子點材料也使響應率大幅提升。 | zh_TW |
| dc.description.abstract | In this thesis, the hybrid photodetector based on PbS quantum dot (QD) and twodimensional materials (TDMs) had achieved high gain and high responsivity optoelectronic characteristics due to the strong absorption of QD and high mobility in TDMs. Carrier transport between QD and TDMs would be efficient by various ligand passivation.
In the first part, the hybrid photodetector PbS QD with different ligand passivation combined with graphene was performed. In the synthetic process, the long alkyl chain would be used to capped the surface of PbS to prevent quantum dot aggregation, but the long alkyl chain of oleic acid capped PbS will block inter-dot carrier transport. To overcome this, ligand exchange was needed to replace the long alkyl chains with short ligands to improve the conductivity. Fourier transform infrared spectroscopy(FTIR) and X-ray photoemission spectroscopy (XPS) was available to verify whether the oleic acid is completely replaced. Also, various ligand passivation lead to the vacuum level shift, and the phenomenon would interpret the graphene doping effect. We used four different ligands such as MPA, EDT, TBAI and PbI2 to passivate PbS QDs. The experimental results validated that the MPA-PbS /graphene hybrid photodetector had achieved the best responsivity up to 5.36 × 106A/W. In the second part, the hybrid photodetector based on PbS and MoS2 was fabricated. The CVD monolayer MoS2 had lots of defect, which caused the slow response time. The thiol molecules was used to passivate the surface of PbS QDs and also fill the defects of MoS2. The passivated PbS combined with MoS2 is not only improved the response time but also efficiently enhance the responsivity due to the high absorption of PbS QDs. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:51:52Z (GMT). No. of bitstreams: 1 ntu-108-R06941018-1.pdf: 5343272 bytes, checksum: 032bc40cc60aaf504eb31e378585cefc (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 ................................................................................................................................... i
中文摘要.......................................................................................................................... ii Abstract............................................................................................................................ iii 目錄................................................................................................................................. iv 圖目錄............................................................................................................................ vii 表目錄.............................................................................................................................. x 第1 章 緒論與介紹.................................................................................................. 1 1.1 緒論................................................................................................................... 1 1.1.1 光偵測器之種類與工作原理................................................................ 2 1.1.2 光偵測器之特性參數[5] ....................................................................... 5 1.2 量子點材料介紹及其光偵測器應用............................................................... 7 1.2.1 量子點介紹............................................................................................ 7 1.2.2 硫化鉛量子點 (PbS) ............................................................................. 9 1.2.3 PbS 配體置換與配體種類.................................................................... 12 1.2.4 量子點光偵測器.................................................................................. 13 1.3 二維材料介紹及其光偵測器應用................................................................. 14 1.3.1 二維材料-石墨烯 (Graphene)............................................................. 14 1.3.2 二維材料-二硫化鉬 (MoS2) ............................................................... 17 1.3.3 石墨烯與MoS2 應用於光偵測器....................................................... 18 第2 章 實驗理論與方法........................................................................................ 20 2.1 實驗儀器介紹................................................................................................. 20 2.1.1 化學氣相沉積 (Chemical Vapor Deposition, CVD)........................... 20 2.1.2 氧電漿蝕刻機...................................................................................... 20 2.1.3 真空熱蒸鍍機...................................................................................... 21 2.1.4 特性量測分析系統.............................................................................. 21 2.1.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)以及電子束 微影(Electron Beam Lithography,EBL)......................................................... 22 2.1.6 傅氏轉換紅外線光譜分析儀(Fourier-transform infrared spectroscopy, FTIR) .............................................................................................................. 23 2.1.7 紫外-可見光光譜儀(UV-VIS Spectrophotometer).............................. 23 2.1.8 紫外光與X 射線光電子能譜(Ultraviolet Photoelectron Spectroscopy, UPS & X-ray Photoelectron Spectroscopy, XPS) .......................................... 24 2.1.9 拉曼光譜儀 (Raman Spectrometer) .................................................... 25 2.2 實驗方法與流程............................................................................................. 26 2.2.1 基板清洗及ODTS 修飾...................................................................... 26 2.2.2 石墨烯轉印技術.................................................................................. 28 2.2.3 電子束微影技術.................................................................................. 28 2.2.4 電極蒸鍍.............................................................................................. 29 2.2.5 PbS 量子點塗佈.................................................................................... 29 第3 章 PbS 量子點與石墨烯混合型光偵測器..................................................... 31 3.1 研究動機......................................................................................................... 31 3.2 PbS 量子點分析............................................................................................... 31 3.3 石墨烯材料分析............................................................................................. 35 3.4 PbS/Graphene 光偵測器................................................................................. 36 3.4.1 PbS 量子點厚度元件優化.................................................................... 36 3.4.2 轉移曲線(Transfer curve,Id-Vg) ........................................................ 38 3.4.3 光電流與響應率.................................................................................. 42 3.4.4 響應時間.............................................................................................. 47 3.4.5 螢光頻譜分析(Photoluminescence, PL).............................................. 48 3.4.6 PbS 量子點光偵測器與PbS/Graphene 光偵測器............................... 49 3.4.7 元件穩定性.......................................................................................... 50 第4 章 PbS 量子點與二硫化鉬混合型光偵測器................................................. 51 4.1 研究動機......................................................................................................... 51 4.2 二硫化鉬(MoS2)材料分析............................................................................. 51 4.3 MPA-PbS/MoS2 光偵測器特性分析.............................................................. 53 4.3.1 轉移曲線(Id-Vg curve) ......................................................................... 53 4.3.2 光電流與響應率.................................................................................. 54 4.3.3 響應時間.............................................................................................. 56 4.3.4 MPA-PbS 與MoS2 與MPA-PbS/MoS2 光偵測器比較....................... 57 4.3.5 元件穩定性.......................................................................................... 59 第5 章 結論與未來展望........................................................................................ 60 5.1 結論................................................................................................................. 60 5.2 未來展望......................................................................................................... 60 參考文獻........................................................................................................................ 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 配體修飾 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 光偵測器 | zh_TW |
| dc.subject | ligand passivation | en |
| dc.subject | two-dimensional materials | en |
| dc.subject | photodetector | en |
| dc.subject | quantum dots | en |
| dc.title | 利用配體修飾量子點結合二維材料之高響應混合型光偵測器 | zh_TW |
| dc.title | High Responsivity Hybrid Photodetector Based on Two-Dimensional Materials and Quantum Dot with Different Ligand Passivation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林恭如;吳肇欣;曾賢德 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 光偵測器,量子點,配體修飾,二維材料,二硫化鉬, | zh_TW |
| dc.subject.keyword | photodetector,quantum dots,ligand passivation,two-dimensional materials, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU201903618 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 5.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
