Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77228Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王大銘 | zh_TW |
| dc.contributor.advisor | Da-Ming Wang | en |
| dc.contributor.author | 黃翰卿 | zh_TW |
| dc.contributor.author | Han-Qing Huang | en |
| dc.date.accessioned | 2021-07-10T21:51:50Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2019-08-22 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 2008, 228 (1-3), 10-29.
2. Porada, S.; Zhao, R.; Van Der Wal, A.; Presser, V.; Biesheuvel, P., Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 2013, 58 (8), 1388-1442. 3. Suss, M.; Porada, S.; Sun, X.; Biesheuvel, P.; Yoon, J.; Presser, V., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science 2015, 8 (8), 2296-2319. 4. Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G., Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research 2018, 150, 225-251. 5. Jeon, S. I.; Park, H. R; Yeo, J. G.; Yang, S.; Cho, C. H.; Han, M. H.; Kim, D. K., Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science 2013, 6 (5), 1471-1475. 6. Gendel, Y.; Rommerskirchen, A. K. E.; David, O.; Wessling, M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications 2014, 46, 152-156. 7. Jeon, S. I.; Yeo, J. G.; Yang, S.; Choi, J.; Kim, D. K., Ion storage and energy recovery of a flow-electrode capacitive deionization process. Journal of Materials Chemistry A 2014, 2 (18), 6378-6383. 8. Rommerskirchen, A.; Linnartz, C. J.; Müller, D.; Willenberg, L. K.; Wessling, M., Energy recovery and process design in continuous flow–electrode capacitive deionization processes. ACS Sustainable Chemistry & Engineering 2018, 6 (10), 13007-13015. 9. Kesieme, U.; Chrysanthou, A.; Catulli, M.; Cheng, C. Y., A review of acid recovery from acidic mining waste solutions using solvent extraction. Journal of Chemical Technology & Biotechnology 2018, 93 (12), 3374-3385. 10. 行政院環境保護署環境資源資料庫。. 11. Agrawal, A.; Sahu, K., An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials 2009, 171 (1-3), 61-75. 12. Akcil, A.; Koldas, S., Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production 2006, 14 (12-13), 1139-1145. 13. Bhandari, V. M.; Yonemoto, T.; Juvekar, V. A., Investigating the differences in acid separation behaviour on weak base ion exchange resins. Chemical Engineering Science 2000, 55 (24), 6197-6208. 14. Kesieme, U. K., Mine waste water treatment and acid recovery using membrane distillation and solvent extraction, Victoria University, 2015. 15. Agrawal, A.; Kumari, S.; Sahu, K., Liquid–liquid extraction of sulphuric acid from zinc bleed stream. Hydrometallurgy 2008, 92 (1-2), 42-47. 16. Stevens, G. W.; Lo, T. C.; Baird, M. H., Extraction, liquid‐liquid. Kirk‐Othmer Encyclopedia of Chemical Technology 2000. 17. Schlesinger, M. E.; King, M. J.; Sole, K. C.; Davenport, W. G., Chapter 16 - Solvent Extraction. In Extractive Metallurgy of Copper (Fifth Edition), Schlesinger, M. E.; King, M. J.; Sole, K. C.; Davenport, W. G., Eds. Elsevier: Oxford, 2011; pp 323-347. 18. Gottliebsen, K.; Grinbaum, B.; Chen, D.; Stevens, G. W., Recovery of sulfuric acid from copper tank house electrolyte bleeds. Hydrometallurgy 2000, 56 (3), 293-307. 19. Agrawal, A.; Kumari, S.; Ray, B.; Sahu, K., Extraction of acid and iron values from sulphate waste pickle liquor of a steel industry by solvent extraction route. Hydrometallurgy 2007, 88 (1-4), 58-66. 20. Sarangi, K.; Padhan, E.; Sarma, P.; Park, K.; Das, R., Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923. Hydrometallurgy 2006, 84 (3-4), 125-129. 21. Ritcey, G., Crud in solvent extraction processing—a review of causes and treatment. Hydrometallurgy 1980, 5 (2-3), 97-107. 22. Tomaszewska, M.; Gryta, M.; Morawski, A., Study on the concentration of acids by membrane distillation. Journal of Membrane Science 1995, 102, 113-122. 23. El-Bourawi, M.; Ding, Z.; Ma, R.; Khayet, M., A framework for better understanding membrane distillation separation process. Journal of Membrane Science 2006, 285 (1-2), 4-29. 24. Gryta, M., Concentration of NaCl solution by membrane distillation integrated with crystallization. Separation Science and Technology 2002, 37 (15), 3535-3558. 25. Luo, J.; Wu, C.; Xu, T.; Wu, Y., Diffusion dialysis-concept, principle and applications. Journal of Membrane Science 2011, 366 (1-2), 1-16. 26. Xu, J.; Lu, S.; Fu, D., Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis. Journal of Hazardous Materials 2009, 165 (1-3), 832-837. 27. Negro, C.; Blanco, M.; Lopez-Mateos, F.; DeJong, A.; LaCalle, G.; Van Erkel, J.; Schmal, D., Free acids and chemicals recovery from stainless steel pickling baths. Separation Science and Technology 2001, 36 (7), 1543-1556. 28. Watanabe, M.; Nishimura, S., Process for recovery of waste H2SO4 and HCl. Google Patents, 1979. 29. Eltawil, M. A.; Zhengming, Z.; Yuan, L. Renewable energy powered desalination systems: Technologies and economics-state of the art, Proceedings of the 12th international water technology conference, Alexandria, Egypt, 2008; pp 27-30. 30. Cattoir, S.; Smets, D.; Rahier, A., The use of electro-electrodialysis for the removal of sulphuric acid from decontamination effluents. Desalination 1999, 121 (2), 123-130. 31. Martí-Calatayud, M. C.; Buzzi, D. C.; García-Gabaldón, M.; Ortega, E.; Bernardes, A.; Tenório, J. A. S.; Pérez-Herranz, V., Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination 2014, 343, 120-127. 32. Lee, E. G.; Moon, S. H.; Chang, Y. K.; Yoo, I. K.; Chang, H. N., Lactic acid recovery using two-stage electrodialysis and its modelling. Journal of Membrane Science 1998, 145 (1), 53-66. 33. Yoon, H.; Lee, J.; Kim, S.; Yoon, J., Review of concepts and applications of electrochemical ion separation (EIONS) process. Separation and Purification Technology 2018, 215, 190-207. 34. Anderson, M. A.; Cudero, A. L.; Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 2010, 55 (12), 3845-3856. 35. Blair, J. W.; Murphy, G. W., Electrochemical demineralization of water with porous electrodes of large surface area. ACS Publications 1960, 27, 206-223. 36. Arnold, B. B.; Murphy, G. W., Studies on the electrochemistry of carbon and chemically-modified carbon surfaces. The Journal of Physical Chemistry 1961, 65 (1), 135-138. 37. Evans, S.; Hamilton, W., The mechanism of demineralization at carbon electrodes. Journal of the Electrochemical Society 1966, 113 (12), 1314-1319. 38. Murphy, G.; Caudle, D., Mathematical theory of electrochemical demineralization in flowing systems. Electrochimica Acta 1967, 12 (12), 1655-1664. 39. Reid, G. W.; STEVENS, A.; ABICHANDANI, J.; TOWNSEND, F.; Al-Awady, M., Field operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water. 1968. 40. Johnson, A. M.; VENOLIA, W., The electrosorb process for desalting water. U.S. Dept. of the Interior, Washington 1970. 41. Johnson, A.; Newman, J., Desalting by means of porous carbon electrodes. Journal of the Electrochemical Society 1971, 118 (3), 510-517. 42. Farmer, J. C.; Fix, D. V.; Mack, G. V.; Pekala, R. W.; Poco, J. F. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water; Lawrence Livermore National Lab. 1995. 43. Farmer, J. C.; Fix, D. V.; Mack, G. V.; Pekala, R. W.; Poco, J. F., Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society 1996, 143 (1), 159-169. 44. Farmer, J.; Fix, D.; Mack, G.; Pekala, R.; Poco, J., Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. Journal of applied electrochemistry 1996, 26 (10), 1007-1018. 45. Remillard, E. M.; Shocron, A. N.; Rahill, J.; Suss, M. E.; Vecitis, C. D., A direct comparison of flow-by and flow-through capacitive deionization. Desalination 2018, 444, 169-177. 46. Suss, M. E.; Baumann, T. F.; Bourcier, W. L.; Spadaccini, C. M.; Rose, K. A.; Santiago, J. G.; Stadermann, M., Capacitive desalination with flow-through electrodes. Energy & Environmental Science 2012, 5 (11), 9511-9519. 47. Bouhadana, Y.; Avraham, E.; Noked, M.; Ben-Tzion, M.; Soffer, A.; Aurbach, D., Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes. The Journal of Physical Chemistry C 2011, 115 (33), 16567-16573. 48. Lee, J. B.; Park, K. K.; Eum, H. M.; Lee, C. W., Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination 2006, 196 (1-3), 125-134. 49. Biesheuvel, P.; Van der Wal, A., Membrane capacitive deionization. Journal of Membrane Science 2010, 346 (2), 256-262. 50. Lee, J. Y.; Seo, S. J.; Yun, S. H.; Moon, S. H., Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Research 2011, 45 (17), 5375-5380. 51. Biesheuvel, P.; Zhao, R.; Porada, S.; Van der Wal, A., Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science 2011, 360 (1), 239-248. 52. Zhao, R.; Satpradit, O.; Rijnaarts, H.; Biesheuvel, P.; Van der Wal, A., Optimization of salt adsorption rate in membrane capacitive deionization. Water Research 2013, 47 (5), 1941-1952. 53. Kim, Y. J.; Choi, J. H., Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Research 2012, 46 (18), 6033-6039. 54. Kim, J. S.; Jeon, Y. S.; Rhim, J. W., Application of poly (vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of mono-and divalent salts. Separation and Purification Technology 2016, 157, 45-52. 55. Huang, Z. H.; Yang, Z.; Kang, F.; Inagaki, M., Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A 2017, 5 (2), 470-496. 56. Helmholtz, H. V., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch‐elektrischen Versuche (Schluss.). Annalen der Physik 1853, 165 (7), 353-377. 57. Pilon, L.; Wang, H.; d’Entremont, A., Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. Journal of The Electrochemical Society 2015, 162 (5), A5158-A5178. 58. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531. 59. Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z., Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water. Advanced Materials 2013, 25 (43), 6270-6276. 60. Lin, C.; Ritter, J. A.; Popov, B. N., Correlation of double‐layer capacitance with the pore structure of sol‐gel derived carbon xerogels. Journal of the Electrochemical Society 1999, 146 (10), 3639-3643. 61. Brown, M. A.; Goel, A.; Abbas, Z., Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angewandte Chemie International Edition 2016, 55 (11), 3790-3794. 62. Norton, J. D.; White, H. S.; Feldberg, S. W., Effect of the electrical double layer on voltammetry at microelectrodes. Journal of Physical Chemistry 1990, 94 (17), 6772-6780. 63. 沈毓沂, 以薄膜電容去離子法回收稀土金屬離子. 國立臺灣大學化學工程學研究所碩士論文 2018, 未出版. 64. Kastening, B.; Heins, M., Properties of electrolytes in the micropores of activated carbon. Electrochimica Acta 2005, 50 (12), 2487-2498. 65. Biesheuvel, P.; Hamelers, H.; Suss, M., Theory of water desalination by porous electrodes with immobile chemical charge. Colloids and Interface Science Communications 2015, 9, 1-5. 66. Geise, G. M.; Cassady, H. J.; Paul, D. R.; Logan, B. E.; Hickner, M. A., Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Physical Chemistry Chemical Physics 2014, 16 (39), 21673-21681. 67. Lee, J. H.; Bae, W. S.; Choi, J. H., Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 2010, 258 (1-3), 159-163. 68. Porada, S.; Bryjak, M.; Van Der Wal, A.; Biesheuvel, P., Effect of electrode thickness variation on operation of capacitive deionization. Electrochimica Acta 2012, 75, 148-156. 69. Li, H.; Gao, Y.; Pan, L.; Zhang, Y.; Chen, Y.; Sun, Z., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research 2008, 42 (20), 4923-4928. 70. Zhao, R.; Biesheuvel, P. M.; van der Wal, A., Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science 2012, 5 (11), 9520-9527. 71. Kang, J.; Kim, T.; Jo, K.; Yoon, J., Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization. Desalination 2014, 352, 52-57. 72. Qu, Y.; Campbell, P. G.; Gu, L.; Knipe, J. M.; Dzenitis, E.; Santiago, J. G.; Stadermann, M., Energy consumption analysis of constant voltage and constant current operations in capacitive deionization. Desalination 2016, 400, 18-24. 73. Porada, S.; Weinstein, L.; Dash, R.; van der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P. M., Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes. ACS Applied Materials & Interfaces 2012, 4 (3), 1194-1199. 74. Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D., Limitation of charge efficiency in capacitive deionization: I. On the behavior of single activated carbon. Journal of The Electrochemical Society 2009, 156 (6), P95-P99. 75. Zhao, R.; Biesheuvel, P. M.; Miedema, H.; Bruning, H.; van der Wal, A., Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters 2010, 1 (1), 205-210. 76. Zhao, R.; Biesheuvel, P.; Van der Wal, A., Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science 2012, 5 (11), 9520-9527. 77. Zhao, R.; Porada, S.; Biesheuvel, P. M.; van der Wal, A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination 2013, 330, 35-41. 78. Al-Karaghouli, A.; Kazmerski, L. L., Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews 2013, 24, 343-356. 79. Liang, P.; Sun, X.; Bian, Y.; Zhang, H.; Yang, X.; Jiang, Y.; Liu, P.; Huang, X., Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination 2017, 420, 63-69. 80. Park, H. R.; Choi, J.; Yang, S.; Kwak, S. J.; Jeon, S. I.; Han, M. H.; Kim, D. K., Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization. RSC Advances 2016, 6 (74), 69720-69727. 81. Yang, S.; Kim, H.; Jeon, S. I.; Choi, J.; Yeo, J. G.; Park, H. R.; Jin, J.; Kim, D. K., Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation. Desalination 2017, 424, 110-121. 82. Kastening, B.; Schiel, W.; Henschel, M., Electrochemical polarization of activated carbon and graphite powder suspensions: Part I. Capacity of suspensions and polarization dynamics. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1985, 191 (2), 311-328. 83. Micka, K., Unloslichen Stoffe. Chem. listy 1961, 55, 852-90. 84. Hatzell, K. B.; Hatzell, M. C.; Cook, K. M.; Boota, M.; Housel, G. M.; McBride, A.; Kumbur, E. C.; Gogotsi, Y., Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization. Environmental Science & Technology 2015, 49 (5), 3040-3047. 85. Doornbusch, G.; Dykstra, J.; Biesheuvel, P.; Suss, M., Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. Journal of Materials Chemistry A 2016, 4 (10), 3642-3647. 86. Cho, Y.; Yoo, C. Y.; Lee, S. W.; Yoon, H.; Lee, K. S.; Yang, S.; Kim, D. K., Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. Water Research 2019, 151, 252-259. 87. Yang, S.; Choi, J.; Yeo, J. G.; Jeon, S. I.; Park, H. R.; Kim, D. K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environmental Science & Technology 2016, 50 (11), 5892-5899. 88. Lee, K. S.; Cho, Y.; Choo, K. Y.; Yang, S.; Han, M. H.; Kim, D. K., Membrane-spacer assembly for flow-electrode capacitive deionization. Applied Surface Science 2018, 433, 437-442. 89. Cho, Y.; Lee, K. S.; Yang, S.; Choi, J.; Park, H. R.; Kim, D. K., A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization. Energy & Environmental Science 2017, 10 (8), 1746-1750. 90. Nativ, P.; Lahav, O.; Gendel, Y., Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes. Desalination 2018, 425, 123-129. 91. Linnartz, C. J.; Rommerskirchen, A.; Wessling, M.; Gendel, Y., Flow-electrode capacitive deionization for double displacement reactions. ACS Sustainable Chemistry & Engineering 2017, 5 (5), 3906-3912. 92. Fang, K.; Gong, H.; He, W.; Peng, F.; He, C.; Wang, K., Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization. Chemical Engineering Journal 2018, 348, 301-309. 93. Ma, J.; Zhang, Y.; Collins, R. N.; Tsarev, S.; Aoyagi, N.; Kinsela, A. S.; Jones, A. M.; Waite, T. D., Flow-electrode CDI removes the uncharged Ca–UO2–CO3 ternary complex from brackish potable groundwater: complex dissociation, transport, and sorption. Environmental Science & Technology 2019, 53 (5), 2739-2747. 94. Huang, W.; Zhang, Y.; Bao, S.; Cruz, R.; Song, S., Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination 2014, 340, 67-72. 95. Strathmann, H., Ion-exchange membrane separation processes. Elsevier: 2004; Vol. 9. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77228 | - |
| dc.description.abstract | 流電極電容去離子技術(Flow-electrode capacitive deionization,FCDI)是一種基於電化學反應的新興水中離子回收技術。它被認為擁有高能源表現、對環境友善以及擁有實現長時間連續回收的潛力等優點。無機酸作為一種常用的工業原料,被廣泛應用在多種製程之中,因此每年會產生大量的酸性廢液。本研究的目的在於發展流電極電容去離子技術,並且測試其是否可以應用於無機強酸的回收。
首先,為了防止作為流電極的活性碳懸浮液堵塞流道,本研究使用的是一種仿流體化床的流電極流道設計,這個設計導致了流電極流道與進料溶液流道較寬,分別為6mm與3.5mm,因此電阻較高,在施加電壓為1.2V的條件下回收表現較差。為此,通過調整施加電壓、改變碳材中活性碳與導電碳黑濃度的方式來提升流電極電容去離子法的回收表現。在施加3V電壓且流電極中含有10wt%活性碳、1wt%導電碳黑的條件下,對於0.01M鹽酸最大回收速率達到了2.64mmol m-2 min-1,並且在長時間運作之下可以達到99.5%的離子回收率。 接著對於流電極電容去離子技術進行長時間連續回收鹽酸測試,結果可以看出流電極電容去離子技術可以在24小時內持續回收鹽酸,但是在長時間運作之後依然會發生回收表現下降的情況。在3V的施加電壓下,在運作了24小時之後回收速率從最大值的4.04 mmol m-2 min-1下降到了2.99 mmol m-2 min-1,下降了25.99%,電流效率則從75.76 %下降到47.85 %,下降了36.84 %。這是因為除了流電極本身電吸附能力限制之外,還會由於大量發生法拉第反應而使得正極流電極溶液中鹽酸濃度升高,在前述的實驗中,運作了24小時後正極溶液中的氯離子濃度比當時進料溶液中的氯離子濃度高出了4.49g/L,是進料溶液的1870%。當正極流電極溶液中的鹽酸濃度大幅度升高並且遠高於進料溶液中鹽酸濃度時,由於陰離子交換膜無法徹底阻擋氫離子的遷移,因此會導致正極流電極溶液中的高濃度鹽酸擴散到進料溶液之中,使得回收的鹽酸不再只是進料溶液中原有的鹽酸,因此導致了電流效率與回收速率的下降。而在結合了流電極再生程序之後,正極流電極中鹽酸濃度的上升被抑制,在10小時運作之後正極流電極溶液中離子濃度僅從0.14 g/L上升到0.19 g/L。因此不再產生因為濃度梯度導致的鹽酸擴散回進料溶液中之現象,從而使得其在連續運作中表現穩定,不會發生回收速率與電流效率下降的情況。 最後測試了以流電極電容去離子技術回收不同無機強酸,結果可以看出流電極電容去離子技術回收鹽酸與硝酸的表現較好,回收速率分別為4.04 mmol m-2 min-1與2.85 mmol m-2 min-1,但是回收硫酸的表現較差,回收速率僅為0.62 mmol m-2 min-1。這可能是因為離子本身性質與離子交換膜性質所導致的結果。 因此,流電極電容去離子技術有回收無機酸的能力,但是要進行大規模應用還需要對模組與整個程序的參數設計進行更進一步的改良與探討。 | zh_TW |
| dc.description.abstract | Flow-electrode capacitive deionization (FCDI) is a novel technology of ion recovery in solution whose fundamental is based on electrochemical reaction. FCDI has benefits including high energy efficiency, environmental friendliness and continuous operation for ion recovery with simultaneous regeneration of the flow-electrode. Mineral acids, which are basic chemicals for a variety of processes are widely used in industry. A large amount of acidic waste is generated every year. The objective of this study is to develop FCDI and to test if it can recover acid from acidic waste.
Firstly, to avoid clogging of the carbon in channel, the design of the flow-electrode channel in this study is similar to a fluidized bed, which leads to a wider flow-electrode channel and feed solution channel. The widths are 6mm and 3.5mm respectively. This results in the increasing resistance and poor performance under 1.2V. To enhance the performance, the contributions of the applied voltage, the concentration of activated carbon and that of conductive carbon black for acid recovery were being studied. The results show that the maximum recover rate is 2.64 mmol m-2 min-1 with 99.5 % hydrochloric acid being recovered from feed solution after long term operation when we apply 3V voltage on the system with 10 wt% activated carbon and 1 wt% conductive carbon flow electrodes. In continuous test, it is showed that FCDI can recover acid continuously. However, performance will decrease after long time recovery without flow-electrode regeneration. When applying voltage under 3V and during 24 hours of operation, the recovery rate decreased from 4.04 mmol m-2 min-1 to 2.99 mmol m-2 min-1 and the charge efficiency decreased from 75.76 % to 47.85 %, which are reduced by 25.99 % and 36.84 %, respectively. The reason is not only the adsorption capacity limitation, but also the increasing concentration in the anode solution due to intense faradic reaction. In the experiment described above, the anode concentration is 4.49 g/L, which is 18.7 times more concentrated than the feed solution. When the concentration in the anode electrode solution is much higher than that in the feed solution, the ions will diffuse from the anode solution to the feed solution because of the concentration gradient and the inability for anion exchange membrane to block the hydrogen ions and chloride ions. In this case, FCDI recovers not only the original ions in feed solution, but also the diffused ones, which leads to the decreasing of performance. After combining the ion removal process and the flow-electrode regeneration process by using two FCDI models, the recovered ions are released from flow-electrode solution. As a result, the concentration of anode solution is no longer higher than that of feed solution. After 10 hours’ operation, the anode concentration only increased from 0.14 g/L to 0.19 g/L, so that FCDI can recover ion from feed solution continuously with the performance remaining stable. Finally, we tested if FCDI can recover different acid by changing feed solution. The performance for the recovery of hydrochloric acid, nitric acid and sulfuric acid had been compared via FCDI. The results show that the recovery rates of chloride acid and nitric acid are 4.04 mmol m-2 min-1 and 2.85 mmol m-2 min-1, respectively, which are better than 0.62 mmol m-2 min-1 of sulfuric acid using FCDI. This is because of the essential properties of ion and ion exchange membrane. This study has proved that FCDI has ability to recover mineral acids. However, in order to apply it in industry, the model as well as the parameters of the process should be further studied and improved. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:51:50Z (GMT). No. of bitstreams: 1 ntu-108-R06524097-1.pdf: 3928499 bytes, checksum: 4693bba23369c06c03212ac051375517 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract V 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 5 2.1 無機酸回收 5 2.1.1 離子交換法 6 2.1.2 溶劑萃取法 6 2.1.3 膜蒸餾法 8 2.1.4 擴散透析法 8 2.1.5 電解沉積法 9 2.1.6 電透析法 10 2.2 電容去離子技術 11 2.2.1 電容去離子技術發展歷程 13 2.2.2 電容去離子技術的模組分類 14 2.2.3 電容去離子技術之電極材料 17 2.2.4 電容去離子技術的電化學吸附/脫附機制與理論與電雙層模型 18 2.2.5 電容去離子技術之操作方法 23 2.2.6 電容去離子技術之性能測定 25 2.3 流電極電容去離子技術 27 2.3.1 流電極之製備 29 2.3.2 流電極電容去離子技術之製程設計 31 2.3.3 流電極電容去離子技術之應用 33 第三章 實驗方法與步驟 35 3.1 設備與儀器 35 3.2 實驗藥品 36 3.3 實驗步驟 37 3.3.1 流電極製備 37 3.3.2 基礎分析 38 3.3.3 流電極電容去離子測試 41 第四章 結果與討論 53 4.1 基礎分析 53 4.1.1比表面積分析 53 4.1.2 流電極一般吸附測試 55 4.2 批次式流電極電容去離子技術參數對鹽酸回收效能之影響 57 4.2.1 改變施加電壓之影響 57 4.2.2 改變流電極中導電碳黑濃度之影響 61 4.2.3 改變流電極中活性碳濃度之影響 64 4.3 連續式流電極電容去離子技術參數對鹽酸回收效能之影響 68 4.3.1 改變電壓之影響 68 4.3.2 改變進料溶液濃度之影響 79 4.4 流電極電容去離子技術結合同步式流電極再生程序之測試 84 4.4.1 流電極再生方法之討論 84 4.4.2 批次式流電極電容去離子技術結合流電極再生程序之測試 87 4.4.3 連續式流電極電容去離子技術結合流電極再生程序之測試 91 4.5 流電極電容去離子技術對於不同無機酸之回收表現 98 4.5.1 批次式流電極電容去離子技術回收不同種類無機酸之測試 98 4.5.2 連續式流電極電容去離子技術回收不同種類無機酸之測試 101 第五章 結論與展望 107 5.1 結論 107 5.2 建議 109 参考文献 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 流電極電容去離子技術 | zh_TW |
| dc.subject | 電容去離子技術 | zh_TW |
| dc.subject | 連續程序 | zh_TW |
| dc.subject | 酸回收 | zh_TW |
| dc.subject | 電吸附 | zh_TW |
| dc.subject | continuous process | en |
| dc.subject | Flow-electrode capacitive deionization | en |
| dc.subject | capacitive deionization | en |
| dc.subject | recovery of acid | en |
| dc.subject | electrosorption | en |
| dc.title | 以流電極電容去離子技術回收無機酸 | zh_TW |
| dc.title | Recovery of Mineral Acid by Flow-electrode Capacitive deionization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 侯嘉洪 | zh_TW |
| dc.contributor.coadvisor | Chia-Hung Hou | en |
| dc.contributor.oralexamcommittee | 李魁然;林芳慶;高瑟聰 | zh_TW |
| dc.contributor.oralexamcommittee | Kueir-Rarn Lee;Fang-Ching Lin;Se-Tsung Gao | en |
| dc.subject.keyword | 流電極電容去離子技術,電容去離子技術,連續程序,酸回收,電吸附, | zh_TW |
| dc.subject.keyword | Flow-electrode capacitive deionization,capacitive deionization,continuous process,recovery of acid,electrosorption, | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU201903726 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-2.pdf Restricted Access | 3.84 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
