Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77222
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧zh_TW
dc.contributor.advisorShan-hui Hsuen
dc.contributor.author林子為zh_TW
dc.contributor.authorTzu-Wei Linen
dc.date.accessioned2021-07-10T21:51:35Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1]Balakrishnan B, Mohanty M, Umashankar P,Jayakrishnan A, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26 (32), 6335-6342.
[2]Tseng T-C, Hsieh F-Y, Theato P, Wei Y,Hsu S-h, Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials 2017, 133, 20-28.
[3]Huang W, Wang Y, Chen Y, Zhao Y, Zhang Q, Zheng X, Chen L,Zhang L, Strong and Rapidly Self‐Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare Materials 2016, 5 (21), 2813-2822.
[4]Hager MD, Greil P, Leyens C, van der Zwaag S,Schubert US, Self‐healing materials. Advanced Materials 2010, 22 (47), 5424-5430.
[5]Patel VR,Amiji MM, Preparation and characterization of freeze-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharmaceutical Research 1996, 13 (4), 588-593.
[6]Wood CD,Cooper AI, Synthesis of macroporous polymer beads by suspension polymerization using supercritical carbon dioxide as a pressure-adjustable porogen. Macromolecules 2001, 34 (1), 5-8.
[7]Bennett DJ, Burford RP, Davis TP,Tilley HJ, Synthesis of porous hydrogel structures by polymerizing the continuous phase of a microemulsion. Polymer International 1995, 36 (3), 219-226.
[8]Kabiri K, Omidian H,Zohuriaan‐Mehr M, Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate. Polymer International 2003, 52 (7), 1158-1164.
[9]Hjerten S, Liao J-L,Zhang R, High-performance liquid chromatography on continuous polymer beds. Journal of Chromatography A 1989, 473, 273-275.
[10]Nam YS,Park TG, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Journal of Biomedical Materials Research 1999, 47 (1), 8-17.
[11]Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H,Mattiasson B, Polymeric cryogels as promising materials of biotechnological interest. TRENDS in Biotechnology 2003, 21 (10), 445-451.
[12]Dainiak MB, Kumar A, Plieva FM, Galaev IY,Mattiasson B, Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels. Journal of Chromatography A 2004, 1045 (1-2), 93-98.
[13]Doretti L, Ferrara D, Gattolin P, Lora S, Schiavon F,Veronese FM, PEG-modified glucose oxidase immobilized on a PVA cryogel membrane for amperometric biosensor applications. Talanta 1998, 45 (5), 891-898.
[14]Kumar A, Plieva FM, Galaev IY,Mattiasson B, Affinity fractionation of lymphocytes using a monolithic cryogel. Journal of Immunological Methods 2003, 283 (1-2), 185-194.
[15]Kumar A, Bansal V, Nandakumar KS, Galaev IY, Roychoudhury PK, Holmdahl R,Mattiasson B, Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices. Biotechnology and Bioengineering 2006, 93 (4), 636-646.
[16]Tong F, Chen X, Chen L, Zhu P, Luan J, Mao C, Bao J,Shen J, Preparation, blood compatibility and anticoagulant effect of heparin-loaded polyurethane microspheres. Journal of Materials Chemistry B 2013, 1 (4), 447-453.
[17]Bil M, Ryszkowska J, Woźniak P, Kurzydłowski KJ,Lewandowska-Szumieł M, Optimization of the structure of polyurethanes for bone tissue engineering applications. Acta Biomater. 2010, 6 (7), 2501-2510.
[18]Jovanovic D, Engels G, Plantinga J, Bruinsma M, Van Oeveren W, Schouten A, Van Luyn M,Harmsen M, Novel polyurethanes with interconnected porous structure induce in vivo tissue remodeling and accompanied vascularization. Journal of Biomedical Materials Research Part A 2010, 95 (1), 198-208.
[19]Ou C-W, Su C-H, Jeng U-S,Hsu S-h, Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion. ACS Applied Materials & Interfaces 2014, 6 (8), 5685-5694.
[20]Hsu S-h, Hung K-C, Lin Y-Y, Su C-H, Yeh H-Y, Jeng U-S, Lu C-Y, Dai SA, Fu W-E,Lin J-C, Water-based synthesis and processing of novel biodegradable elastomers for medical applications. Journal of Materials Chemistry B 2014, 2 (31), 5083-5092.
[21]Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS,Lieber CM, Functional group imaging by chemical force microscopy. Science 1994, 265 (5181), 2071-2074.
[22]Xie S, Svec F,Frechet JM, Preparation of porous hydrophilic monoliths: Effect of the polymerization conditions on the porous properties of poly (acrylamide‐co‐N, N′‐methylenebisacrylamide) monolithic rods. Journal of Polymer Science Part A: Polymer Chemistry 1997, 35 (6), 1013-1021.
[23]Nair CR, Advances in addition-cure phenolic resins. Progress in Polymer Science 2004, 29 (5), 401-498.
[24]Lorenz O,Parks C, The crosslinking efficiency of some vulcanizing agents in natural rubber. Journal of Polymer Science Part A: Polymer Chemistry 1961, 50 (154), 299-312.
[25]Kok C,Yee V, The effects of crosslink density and crosslink type on the tensile and tear strengths of NR, SBR and EPDM gum vulcanizates. European Polymer Journal 1986, 22 (4), 341-345.
[26]Piringer OG,Baner AL, Plastic packaging: interactions with food and pharmaceuticals. John Wiley & Sons: 2008.
[27]Tharanathan RN,Kittur FS, Chitin—the undisputed biomolecule of great potential. 2003.
[28]Ikinci G, Şenel S, Akıncıbay H, Kaş S, Erciş S, Wilson C,Hıncal A, Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int. J. Pharm. 2002, 235 (1-2), 121-127.
[29]Patashnk S, Rabinovich L,Golomb G, Preparation and evaluation of chitosan microspheres containing bisphosphonates. J. Drug Targeting 1997, 4 (6), 371-380.
[30]Felt O, Furrer P, Mayer J, Plazonnet B, Buri P,Gurny R, Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm. 1999, 180 (2), 185-193.
[31]Song J, Suh CH, Park YB, Lee SH, Yoo NC, Lee JD, Kim KH,Lee SK, A phase I/IIa study on intra-articular injection of holmium-166-chitosan complex for the treatment of knee synovitis of rheumatoid arthritis. European Journal of Nuclear Medicine 2001, 28 (4), 489-497.
[32]He P, Davis SS,Illum L, In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 1998, 166 (1), 75-88.
[33]Calvo P, Vila-Jato JL,Alonso MaJ, Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 1997, 153 (1), 41-50.
[34]Köping-Höggård M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM,Artursson P, Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 2001, 8 (14), 1108.
[35]Felt O, Carrel A, Baehni P, Buri P,Gurny R, Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. Journal of Ocular Pharmacology and Therapeutics 2000, 16 (3), 261-270.
[36]Ueno H, Mori T,Fujinaga T, Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews 2001, 52 (2), 105-115.
[37]Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y,Domard A, The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 2007, 28 (24), 3478-3488.
[38]Yang B, Zhang Y, Zhang X, Tao L, Li S,Wei Y, Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polymer Chemistry 2012, 3 (12), 3235-3238.
[39]Weng L, Romanov A, Rooney J,Chen W, Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials 2008, 29 (29), 3905-3913.
[40]Jarrahpour A, Zarei M, Viktor M, Rudolf K,Ján L, Open Access Short Note Synthesis of 2-({[4-(4-{[(E)-1-(2-hydroxy-3-methoxyphenyl) methylidene] amino} phenoxy) phenyl] imino} methyl)-6-methoxy phenol. Molbank 2004, 2004 (1), M352.
[41]Zhang Y, Tao L, Li S,Wei Y, Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 2011, 12 (8), 2894-2901.
[42]Engel AK, Yoden T, Sanui K,Ogata N, Synthesis of aromatic Schiff base oligomers at the air/water interface. Journal of the American Chemical Society 1985, 107 (26), 8308-8310.
[43]Anacona J, Marquez V,Jimenez Y, Synthesis and characterization of manganese (II), nickel (II), copper (II) and zinc (II) Schiff-base complexes derived from 1, 10-phenanthroline-2, 9-dicarboxaldehyde and 2-mercaptoethylamine. Journal of Coordination Chemistry 2009, 62 (7), 1172-1179.
[44]Huang Y-J, Hung K-C, Hung H-S,Hsu S-h, Modulation of macrophage phenotype by biodegradable polyurethane nanoparticles: possible relation between macrophage polarization and immune response of nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (23), 19436-19448.
[45]Young T, Hunt J, Green D,Willhite G, Study of Equilibrium Properties of Cr (III)/Polyacrylamide Gels by Swelling Measurement and Equilibrium Dialysis. SPE Reservoir Engineering 1989, 4 (03), 348-356.
[46]Lozinsky VI, Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russian Chemical Reviews 2002, 71 (6), 489-511.
[47]Béduer A, Braschler T, Peric O, Fantner GE, Mosser S, Fraering PC, Benchérif S, Mooney DJ,Renaud P, A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Advanced Healthcare Materials 2015, 4 (2), 301-312.
[48]Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA,Mooney DJ, Injectable preformed scaffolds with shape-memory properties. Proceedings of the National Academy of Sciences 2012, 109 (48), 19590-19595.
[49]Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, Shih T-Y, Verbeke CS, Bhatta D,Dranoff G, Injectable cryogel-based whole-cell cancer vaccines. Nature Communications 2015, 6, 7556.
[50]Xin Y,Yuan J, Schiff's base as a stimuli-responsive linker in polymer chemistry. Polymer Chemistry 2012, 3 (11), 3045-3055.
[51]Hsieh F-Y, Tao L, Wei Y,Hsu S-h, A novel biodegradable self-healing hydrogel to induce blood capillary formation. Npg Asia Materials 2017, 9 (3), e363.
[52]Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV,Healy KE, Substrate modulus directs neural stem cell behavior. Biophysical Journal 2008, 95 (9), 4426-4438.
[53]Hamilton TA, Zhao C, Pavicic Jr PG,Datta S, Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 2014, 5, 554.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77222-
dc.description.abstract水凝膠由於其高保水性和柔軟特性而廣泛用於組織工程中。開發具有可調節降解速率,適當環境響應性和可注射性的水凝膠仍然是一個挑戰。在這項研究中,可生物降解的雙官能聚氨酯(DFPU)奈米粒子分散體是由一種涉及使用乙二醛的水性製程合成的。這種DFPU 用於交聯乙二醇殼聚醣(CS)。在室溫下DFPU 和CS鍵結形成席夫鹼,成功製備出自癒合水凝膠。此外,在-20 ℃冷凍後產生冷凍凝膠。由於席夫鹼的性質,發現這些凝膠對pH 值和含胺分子敏感。此外,降解速率可以通過合成DFPU 之寡聚二醇類型進行調整。經由流變學測試證實了優異的自癒性能(損傷後恢復約100%)。自癒合凝膠和冷凍凝膠均可注射(分別通過26 號針和18 號針),並顯示出良好的細胞增殖。14 天大鼠植入顯示冷凍凝膠的低免疫應答。功能化的可生物降解聚胺酯奈米粒子為一交聯劑的新平台,可與含胺基生物大分子(例如殼聚醣)進行動態席夫反應,其有潛力產生應用於生物醫學的各種自癒合水凝膠和冷凍凝膠。zh_TW
dc.description.abstractHydrogels are widely used in tissue engineering owing to their high water retention and soft characteristics. It remains a challenge to develop hydrogels with tunable degradation rates, proper environmental responsiveness, and injectability. In this study, biodegradable difunctional polyurethane (DFPU) nanoparticle dispersions were synthesized from an eco-friendly waterborne process involving the use of glyoxal. Such DFPU was used to crosslink chitosan (CS). The Schiff base linkage between DFPU and CS successfully produced self-healing hydrogels at room temperature. Moreover, cryogels were generated after being frozen at -20 °C. These gels were found to be sensitive to pH values and amine-containing molecules owing to the property of Schiff bases. Besides, the degradation rates could be adjusted by the types of the component oligodiols in DFPU. Rheological evaluation verified the excellent self-healing properties (~100% recovery after damage). Both the self-healing gels and cryogels were injectable (through 26-gauge and 18-gauge needles, respectively) and demonstrated good cell proliferation. Rat implantation at 14 days showed low immune responses of cryogels. The functionalized biodegradable polyurethane nanoparticles represent a new platform of crosslinkers for biomacromolecules such as chitosan through dynamic Schiff reaction that may give rise to a wide varieties of self-healing gels and cryogels for biomedical applications.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:51:35Z (GMT). No. of bitstreams: 1
ntu-108-R06549020-1.pdf: 3472640 bytes, checksum: 9747191ef0899e1506380960c6cbde42 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
口試委員會審定書 ........................................................................................................... I
致謝 .................................................................................................................................. II
摘要 ................................................................................................................................ III
Abstract ........................................................................................................................... IV
目錄 ................................................................................................................................ VI
圖目錄 ............................................................................................................................ XI
表目錄 .......................................................................................................................... XIII
第一章 文獻回顧 ............................................................................................................ 1
1.1. 水凝膠 .............................................................................................................. 1
1.2. 環境響應型水凝膠 .......................................................................................... 1
1.3. 可注射水凝膠 .................................................................................................. 1
1.4. 自癒合水凝膠 .................................................................................................. 2
1.5. 冷凍凝膠 .......................................................................................................... 2
1.6. 聚胺酯 .............................................................................................................. 3
1.7. 交聯劑 .............................................................................................................. 4
1.8. 殼聚醣 .............................................................................................................. 4
1.9. 席夫鹼 .............................................................................................................. 5
1.10. 研究目的 ........................................................................................................ 5
第二章 研究方法 ............................................................................................................ 6
2.1. 研究架構 .......................................................................................................... 6
2.2. 水性聚胺酯交聯劑之合成 .............................................................................. 8
2.3. 表徵水性聚胺酯交聯劑 .................................................................................. 9
2.3.1. 奈米粒徑分析儀分析 ........................................................................... 9
2.3.2. 膠體滲透層析儀分析 ......................................................................... 10
2.3.3. 穿透式電子顯微鏡分析 ..................................................................... 10
2.3.4. 小角度X 光散射分析 ........................................................................ 10
2.3.5. 衰减全反射傅立葉紅外光譜儀分析 ................................................. 10
2.3.6. X 光繞射儀分析 .................................................................................. 10
2.4. 製備CS-PU 自癒合水凝膠與冷凍凝膠 ....................................................... 11
2.5. 表徵CS-PU 自癒合水凝膠 ........................................................................... 12
2.5.1. 巨觀自癒合測試 ................................................................................. 12
2.5.2. 流變分析 ............................................................................................. 12
2.5.3. 熱性能分析 ......................................................................................... 12
2.6. 表徵CS-PU 冷凍凝膠 ................................................................................... 13
2.6.1. 動態機械分析儀分析 ......................................................................... 13
2.6.2. 孔隙率分析 ......................................................................................... 13
2.6.3. 溶脹度分析 ......................................................................................... 13
2.6.4. 掃描式電子顯微鏡分析 ..................................................................... 13
2.6.5. 注射性測試 ......................................................................................... 14
2.7. CS-PU 自癒合水凝膠與冷凍凝膠之環境響應性 ......................................... 14
2.8. CS-PU、CS-PU'自癒合水凝膠與冷凍凝膠之體外降解 .............................. 14
2.9. 交聯度分析 .................................................................................................... 14
2.10. 細胞實驗 ...................................................................................................... 15
2.10.1. 細胞培養 ........................................................................................... 15
2.10.2 細胞於CS-PU 自癒合水凝膠與冷凍凝膠中之存活率與增殖 ....... 15
2.11. 大鼠皮下實驗 .............................................................................................. 16
2.11.1.大鼠皮下材料植入 ............................................................................. 16
2.11.2. 組織切片 ........................................................................................... 16
2.11.3. 蘇木精-伊紅染色 .............................................................................. 16
2.11.4. 免疫螢光染色 ................................................................................... 17
2.12. 統計學分析 .................................................................................................. 17
第三章 實驗結果 .......................................................................................................... 18
3.1. 表徵水性聚胺酯交聯劑 ................................................................................ 18
3.1.1. 奈米粒徑分析儀與膠體滲透層析儀分析 ......................................... 18
3.1.2. 穿透式電子顯微鏡分析 ..................................................................... 18
3.1.3. 小角度X 光散射分析 ........................................................................ 18
3.1.4. 衰减全反射傅立葉紅外光譜儀分析 ................................................. 19
3.1.5. X 光繞射儀分析 .................................................................................. 19
3.2. 優化CS-PU 自癒合水凝膠之組成比例 ....................................................... 19
3.3. 表徵CS-PU 自癒合水凝膠 ........................................................................... 20
3.3.1. 巨觀自癒合測試 ................................................................................. 20
3.3.2. 流變性能測試 ..................................................................................... 20
3.3.3. 可注射性測試 ..................................................................................... 20
3.4. 表徵CS-PU 冷凍凝膠 ................................................................................... 21
3.4.1. 基本物理性質測試(可壓縮性、溶脹比、孔隙度、機械性質)....... 21
3.4.2. 溶脹速率分析 ..................................................................................... 21
3.4.3. 掃描式電子顯微鏡分析 ..................................................................... 21
3.4.4. 熱穩定性分析 ..................................................................................... 21
3.4.5. 形狀回復、可注射性質 ..................................................................... 22
3.5. CS-PU 自癒合水凝膠與冷凍凝膠之響應性分析 ......................................... 22
3.6. CS-PU、CS-PU'自癒合水凝膠與冷凍凝膠之體外降解 .............................. 22
3.7. CS-PU 自癒合水凝膠與冷凍凝膠含細胞之存活率與增殖 ......................... 23
3.8. 大鼠皮下植入 ................................................................................................ 23
3.8.1. 蘇木精-伊紅染色分析 ........................................................................ 23
3.8.2. 免疫染色分析 ..................................................................................... 23
第四章 討論 .................................................................................................................. 24
4.1. 水性聚胺酯交聯劑基本性質分析 ................................................................ 24
4.2. 優化CS-PU 自癒合水凝膠組成比例 ........................................................... 24
4.3. CS-PU 自癒合水凝膠性質分析 ..................................................................... 24
4.4. CS-PU 冷凍凝膠性質分析 ............................................................................. 25
4.5. CS-PU 自癒合水凝膠與冷凍凝膠之響應性分析 ......................................... 26
4.6. CS-PU、CS-PU'自癒合水凝膠與冷凍凝膠之體外降解調控分析 .............. 26
4.7. CS-PU 自癒合水凝膠與冷凍凝膠含細胞之存活率分析 ............................. 26
4.8. 大鼠皮下實驗分析 ........................................................................................ 27
4.9. 未來展望 ........................................................................................................ 27
第五章 結論 .................................................................................................................. 28
參考文獻 ........................................................................................................................ 29
-
dc.language.isozh_TW-
dc.subject聚胺酯奈米粒子zh_TW
dc.subject交聯劑zh_TW
dc.subject殼聚醣zh_TW
dc.subject自癒合水凝膠zh_TW
dc.subject冷凍凝膠zh_TW
dc.subjectchitosanen
dc.subjectself-healing hydrogelen
dc.subjectpolyurethane nanoparticleen
dc.subjectcryogelen
dc.subjectcrosslinkeren
dc.title生物可降解聚胺酯奈米粒子交聯殼聚醣之自癒合水凝膠與冷凍凝膠zh_TW
dc.titleSelf-healing hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosanen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee侯詠德;張書瑋;黃翠薇zh_TW
dc.contributor.oralexamcommitteeYung-Te Hou;Shu-Wei Chang;Chui-Wei Wongen
dc.subject.keyword聚胺酯奈米粒子,交聯劑,殼聚醣,自癒合水凝膠,冷凍凝膠,zh_TW
dc.subject.keywordpolyurethane nanoparticle,chitosan,crosslinker,self-healing hydrogel,cryogel,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU201903716-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved