Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7721
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡文聰(Andrew M. Wo)
dc.contributor.authorJhan-Yu Syuen
dc.contributor.author許展毓zh_TW
dc.date.accessioned2021-05-19T17:51:17Z-
dc.date.available2022-08-31
dc.date.available2021-05-19T17:51:17Z-
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-10
dc.identifier.citation1. Lapaire, O., et al., Georg Schmorl on trophoblasts in the maternal circulation. Placenta, 2007. 28(1): p. 1-5.
2. Mujezinovic, F. and Z. Alfirevic, Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol, 2007. 110(3): p. 687-94.
3. Tabor, A., et al., RANDOMISED CONTROLLED TRIAL OF GENETIC AMNIOCENTESIS IN 4606 LOW-RISK WOMEN. The Lancet, 1986. 327(8493): p. 1287-1293.
4. Muller, F., et al., First-trimester screening for Down syndrome in France combining fetal nuchal translucency measurement and biochemical markers. Prenat Diagn, 2003. 23(10): p. 833-6.
5. Lo, Y.M.D., et al., Quantitative analysis of fetal DNA in maternal plasma and serum: Implications for noninvasive prenatal diagnosis. American Journal of Human Genetics, 1998. 62(4): p. 768-775.
6. Mohamed, H., J.N. Turner, and M. Caggana, Biochip for separating fetal cells from maternal circulation. J Chromatogr A, 2007. 1162(2): p. 187-92.
7. Mouawia, H., et al., Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod Biomed Online, 2012. 25(5): p. 508-20.
8. Huang, R., et al., A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn, 2008. 28(10): p. 892-9.
9. Desitter, I., et al., A New Device for Rapid Isolation by Size and Characterization of Rare Circulating Tumor Cells. Anticancer Research, 2011. 31(2): p. 427-441.
10. Arya, S.K., B. Lim, and A.R. Rahman, Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip, 2013. 13(11): p. 1995-2027.
11. Dolfus, C., et al., Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters. Chin J Cancer Res, 2015. 27(5): p. 479-87.
12. Boyum, A., ISOLATION OF MONONUCLEAR CELLS AND GRANULOCYTES FROM HUMAN BLOOD - ISOLATION OF MONONUCLEAR CELLS BY ONE CENTRIFUGATION AND OF GRANULOCYTES BY COMBINING CENTRIFUGATION AND SEDIMENTATION AT L G. Scandinavian Journal of Clinical & Laboratory Investigation, 1968. S 21: p. 77-&.
13. Campton, D.E., et al., High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer, 2015. 15: p. 360.
14. Chalfin, H.J., et al., Nucleolin Staining May Aid in the Identification of Circulating Prostate Cancer Cells. Clin Genitourin Cancer, 2017. 15(3): p. e477-e481.
15. Breman, A.M., et al., Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing. Prenat Diagn, 2016. 36(11): p. 1009-1019.
16. Campton, D., et al., High-recovery multiplex analysis of circulating tumor cells by density-based enrichment, automated platform immunofluorescence staining, and digital microscopy. Cancer Research, 2014. 74(19): p. 1.
17. Miltenyi, S., et al., HIGH-GRADIENT MAGNETIC CELL-SEPARATION WITH MACS. Cytometry, 1990. 11(2): p. 231-238.
18. Zhao, X.X., et al., An examination of different fetal specific antibodies and magnetic activated cell sorting for the enrichment of fetal erythroblasts from maternal blood. Congenital Anomalies, 2002. 42(3): p. 175-180.
19. Zhao, X.X., et al., Enrichment of fetal cells from maternal blood by magnetic activated cell sorting (MACS) with fetal cell specific antibodies: One‐step versus two‐step MACS. Congenital Anomalies, 2002. 42(2): p. 120-124.
20. Herzenberg, L.A., et al., FETAL CELLS IN THE BLOOD OF PREGNANT-WOMEN - DETECTION AND ENRICHMENT BY FLUORESCENCE-ACTIVATED CELL SORTING. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(3): p. 1453-1455.
21. Herzenberg, L.A., et al., The History and Future of the Fluorescence Activated Cell Sorter and Flow Cytometry: A View from Stanford. Clinical Chemistry, 2002. 48(10): p. 1819-1827.
22. Bruch, J.F., et al., TROPHOBLAST-LIKE CELLS SORTED FROM PERIPHERAL MATERNAL BLOOD USING FLOW-CYTOMETRY - A MULTIPARAMETRIC STUDY INVOLVING TRANSMISSION ELECTRON-MICROSCOPY AND FETAL DNA AMPLIFICATION. Prenatal Diagnosis, 1991. 11(10): p. 787-798.
23. Zheng, Y.L., et al., Flow sorting of fetal erythroblasts using intracytoplasmic anti‐fetal haemoglobin: Preliminary observations on maternal samples. Prenatal Diagnosis, 1995. 15(10): p. 897-905.
24. Jiang, R.Z., et al., A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget, 2015. 6(42): p. 44781-44793.
25. Lu, Y.T., et al., NanoVelcro Chip for CTC enumeration in prostate cancer patients. Methods, 2013. 64(2): p. 144-52.
26. Ankeny, J.S., et al., Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer, 2016. 114(12): p. 1367-75.
27. Zhao, L., et al., High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv Mater, 2013. 25(21): p. 2897-902.
28. Chen, J.F., et al., Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells. Theranostics, 2016. 6(9): p. 1425-39.
29. Stott, S.L., et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18392-7.
30. Park, M.H., et al., Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip. J Am Chem Soc, 2017. 139(7): p. 2741-2749.
31. Morijiri, T., et al., Microfluidic counterflow centrifugal elutriation system for sedimentation-based cell separation. Microfluidics and Nanofluidics, 2013. 14(6): p. 1049-1057.
32. Tsen Hsiang Life Science Ltd.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7721-
dc.description.abstract在台灣每年大約有20萬名新生兒,其中大約有4萬名孕婦是屬於高齡產婦(年紀大於35歲),因此產前檢測變得相當重要。侵入型產前檢測,如:羊膜穿刺、絨毛膜取樣等技術,雖然是目前公信的標準,但卻伴隨著流產的風險以及對母體的傷害。近年來非侵入式產前檢測受到許多團隊的矚目,如: 胎兒游離DNA檢測、從母血中分離胎兒細胞等技術,胎兒游離DNA因具有偽陰性與偽陽性的機率,因此即使檢測出有基因疾病的可能性,仍然要做侵入式產前檢測作確診。另外,由於胎兒細胞在母血中含量非常稀少,以及胎兒細胞表面抗體的不明確,所以必須發展一高靈敏度、高產量以及自動化的技術。
本研究提出一微流碟盤系統利用密度離心方式分離胎兒細胞、螢光辦別系統以及單一細胞抓技術與後端基因分析的建立。此研究包含一微流結構碟盤進行分離細胞、一具有微流結構收集管進行細胞收集與染色、收取到的細胞用於進行後端的基因分析。可拆卸式微流收集管不僅方便染色時進行混合的動作,也方便離心步驟結束的檢體取出做螢光辨識以及後端的基因分析,且自動化的流程可以減少人為操作變異。系統經由滋胚層癌化細胞株(JEG-3)來驗證,將定量好的細胞加進4毫升的健康人血液中,以模擬胎兒細胞在母血中的情境,而在經過整個實驗流程後,包含梯度密碟盤分離,以及在微流收集管進行CD 45、HLA-G、cytokeratin、Hoechst 33342的螢光染色,並以螢光顯微鏡進行判讀,最後使用單一細胞抓取技術取得5到7顆高純度、高準度的目標細胞,以進行全基因放大、聚合酶連鎖反應、短縱列重複序列驗證。實驗結果顯示此微流碟盤系統回收率約80%(79.5±3.5%),取五段不同的染色體(SRY, G3PDH, chromosome 3, chromosome 11, and chromosome 13)進行聚合酶連鎖反應驗證,而結果顯示每個片段均有成功放大出來,另外,還更進一步選用六段不同的基因(D19S433, vWA, TPOX, D18S51, D5S818 and FGA)做短縱列重複序列驗證,結果顯示所放大出來的基因跟參考的細胞株一樣,並與非孕婦健康人的基因不同。因此,本研究發展一微流碟盤系統搭配自動化操作平台回收稀少之胎兒細胞,並進行後端全面的基因分析,希望在將來跟醫生收取檢體可提供順暢的檢體處理流程,以及孕婦產前檢測可信賴的方法之一。
zh_TW
dc.description.abstractTraditional prenatal genetic diagnosis relies on invasive procedures such as amniocentesis and chorionic villus sampling in order to obtain the fetal cells. However, these procedures may lead to abortion in about 1 in 100 to 500 incidences. Hence, non-invasive prenatal diagnosis, such as cell-free DNA and isolation of circulating fetal cells, has gained prominence in recent years. The ability to harness fetal cells is extremely attractive, if successful, they have the potential to enable comprehensive fetal diagnosis. However , these cells are extremely rare in maternal circulation, rendering development of a sensitive, robust, and automated technology a challenge.
In this thesis, a novel microfluidic device using density-based separation, fetal cells enrichment and multi-step process of immunofluorescence (IF) staining were presented. The device contains a centrifugal disk for enrichment of target cells and a tube-based collector, which can easily wash IF dye and enable sample removal after the separation process. The JEG-3 cell line was used to verify the performance of the device with cells spiked into the blood of healthy donor labeled with HLA-G, cytokeratin, and Hoechst nuclear dye after enrichment. A microfluidic single cell pick technique was applied to retrieve 5 to 7 target cells to mimic the rarity of fetal cells in maternal circulation. Whole genome amplification (WGA) was used on retrieved single cells to amplify all genes followed by polymerase chain reaction (PCR) and short tandem repeat (STR). Results show that the recovery rate of the device reaches nearly 80% (79.5±3.5%). Five different chromosomes (SRY, G3PDH, chromosome 3, chromosome 11, and chromosome 13) successfully confirmed that the amplified genes were from JEG-3 target cells. The STR profiles of PCR amplicon proved that they originated from JEG-3 target cells with the X-Y chromosomes, as distinguished from non-pregnant woman genes with the X-X chromosomes. Taken together, the centrifugal microfluidic system presented should enable successful retrieval of rare fetal cells in maternal circulation towards non-invasive prenatal diagnosis.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:51:17Z (GMT). No. of bitstreams: 1
ntu-106-R04543026-1.pdf: 1860815 bytes, checksum: f70c70243d35e934ed8b00902cc965be (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 II
中文摘要 III
Abstract V
圖目錄 List of Figures VIII
表目錄 List of Tables IX
Abbreviated table X
Chapter 1 Introduction 1
1.1 Clinical relevance of fetal cells in maternal blood 1
1.2 Technologies for fetal cells enrichment 3
1.3 Purpose of this research 6
Chapter 2 Design Feature and Methodology 7
2.1 Disk design 7
2.2 Tube-based collector design 11
2.3 Tube-based collector immunofluorescence staining 13
Chapter 3 Materials and Methods 14
3.1 Materials 14
3.1.1 Fabrication of disk and tube-based collector 14
3.1.2 Cells and cell culture 15
3.1.3 Reagents 15
3.2 Methods 18
3.2.1 Isolation of fetal cells from whole blood via disk system 18
3.2.2 Primary sample preparation 19
3.2.3 Automatic scanning and secondary purification 20
3.2.4 Whole genome amplification and polymerase chain reaction 20
Chapter 4. Results and Discussion 21
4.1 Validation of characteristics of tube-based collector 21
4.2 Comparison of recovery rate between the tube-based collector and a chip-based collector. 22
4.3 Characteristics of placenta cells 24
4.4 Downstream application and verification 27
4.5 Further discussion 29
Chapter 5 Concluding remarks 30
References 31
Appendix 34
dc.language.isoen
dc.title微流體碟盤系統用於母血中胎兒細胞純化進行非侵入式產前檢測zh_TW
dc.titleIsolation of Fetal Cells in Maternal Blood for Non-invasive Prenatal Diagnosis Using a Microfluidic Disk Systemen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建南,林芯?(Shin-Yu Lin)
dc.subject.keyword胎兒細胞,密度梯度離心,微流體,zh_TW
dc.subject.keywordFetal cell,density gradient separation,microfluidics,en
dc.relation.page35
dc.identifier.doi10.6342/NTU201702846
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf1.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved