請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-che Tsai) | |
| dc.contributor.author | Wei-Ting Chen | en |
| dc.contributor.author | 陳韋廷 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:51:25Z | - |
| dc.date.available | 2021-07-10T21:51:25Z | - |
| dc.date.copyright | 2021-03-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-29 | |
| dc.identifier.citation | [1] R. Appleyard, 'Pioneers of electrical communication part 5 - Heinrich Rudolph Hertz.' Electrical Communication 6(2), pp. 63-77, 1927. [2] J. S. Belrose, “Fessenden and Marconi: their differing technologies and transatlantic experiments during the first decade of this century.” International Conference on 100 Years of Radio 411, pp. 32-43, 5-7 September 1995. [3] H. Haas, “Wireless data from every light bulb.” TEDGlobal 2011, Edinburgh, Scotland, July 11-15, 2011. [4] Latif Ullah Khan, Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, Volume 3, Issue 2, 2017, Pages 78-88, ISSN 2352-8648. [5] S. Rajagopal, R. D. Roberts and S. Lim, 'IEEE 802.15.7 visible light communication: modulation schemes and dimming support,' in IEEE Communications Magazine, vol. 50, no. 3, pp. 72-82, March 2012, doi: 10.1109/MCOM.2012.6163585. [6] NextLifi;http://www.nextlifi.com/ [7] H. Chun, C. J. Chiang, D. C. O'Brien, “Visible light communication using OLEDs: Illumination and channel modeling.” 2012 International Workshop on Optical Wireless Communications (IWOW), Pisa, ltaly, October 22-22, 2012.M. Zhang, X. Yuan, Y. Huang, “A 10.7 km visible light communications experiment.” 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 231-234, Vienna, Austria, July 5-8, 2016. [8] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, “Visible light communications using organic light emitting diodes.” IEEE Communications Magazine 51(8), pp. 148-154, 2013. [8] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, “Visible light communications using organic light emitting diodes.” IEEE Communications Magazine 51(8), pp. 148-154, 2013. [9] 賴楷穎,以3D列印製作用於太陽光通訊的可調變反射元件,國立臺灣大學光電工程學研究所,碩士論文,2011。 [10] H. Qian, S. Zhao, S. Z. Cai and T. Zhou, 'Digitally Controlled Micro-LED Array for Linear Visible Light Communication Systems,' in IEEE Photonics Journal, vol. 7, no. 3, pp. 1-8, June 2015, Art no. 7901508, doi: 10.1109/JPHOT.2015.2424398. [11] Ngoc-Hai Vu, Thanh-Tuan Pham, and Seoyong Shin, 'Modified optical fiber daylighting system with sunlight transportation in free space,' Opt. Express 24, A1528-A1545 (2016) [12] L. Janik, M. Novak, A. Dobesch, L. Hudcova, “Retroreflective optical communication.” 2017 Conference on Microwave Techniques (COMITE), Brno, Czech Republic, April 20-21, 2017. [13] L. Zhou, J. M. Kahn, K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication.” Journal of Microelectromechanical Systems 12(3), pp. 233-242, 2003. [14] 陳昱帆,三葉草型微機電可調變Corner Cube Retro-reflector (CCR)光學回射器,國立臺灣大學光電工程學研究所,碩士論文,2011。 [15] D. H. Lee, J. Y. Park, “Piezo-electrically actuated micro corner cube retroreflector (CCR) for free-space optical communication applications.” Journal of Electrical Engineering Technology 5(2), pp. 337-341, 2010. [16] D. J. Vasquez, J. W. Judy, “Optically-interrogated zero-power MEMS magneto- meter.” Journal of Microelectromechanical Systems 16(2), pp. 336-343, 2007. [17] Y. F. Chen, Y. H. Wang, J. C. Tsai, “Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam.” Optical Engineering 57(3), 035104, 2018. [18] 張智傑,應用於光學辨識系統之可獨立調變貓眼回射器陣列,國立臺灣大學光電工程學研究所,碩士論文,2012。 [19] C. C. Chang, K. H. Chao, B. J. Yang, M. C. Su, J. C. Tsai, “Independently-addressed tunable cat’s eye retro-reflector array for an optical identification system.” 2012 International Conference on Optical MEMS and Nanophotonics, pp. 166-167, Banff, AB, Canada, August 6-9, 2012. [20] C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography.” U.S. Patent 4575330, March 11, 1986. [21] 3D列印機-初學入門指南v1.0,開源科技有限公司 [22] F. Calignano et al., 'Overview on Additive Manufacturing Technologies,' in Proceedings of the IEEE, vol. 105, no. 4, pp. 593-612, April 2017, doi: 10.1109/JPROC.2016.2625098. [23] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, P. Fino, “Overview on additive manufacturing technologie.” Proceedings of the IEEE 105(4), pp. 593-612, 2017. [24] 王彥閎,一體成型平面轉摺三維Corner Cube Retroreflector設計及其製作與特性量測,國立臺灣大學光電工程學研究所,碩士論文,2017。 [25] B. Agrawal, J. Kubby, “Applications of MEMS in segmented mirror space telescopes.” Proc. SPIE 7931, 793102, 2011. [26] 宏穎真空鍍金股份有限公司:http://www.he0229661556.vcom.tw [27] F. Calignano et al., 'Overview on Additive Manufacturing Technologies,' in Proceedings of the IEEE, vol. 105, no. 4, pp. 593-612, April 2017, doi: 10.1109/JPROC.2016.2625098. [28] C. Hilsum, “Electro-optic device.” U. K. Patent 1442360, July 14, 1976. [29] J. W. Doane, N. A. Vaz, B.‐G. Wu, S. Žumer, “Field controlled light scattering from nematic microdroplets.” Appl. Phys. Lett. 48, pp. 269-271, 1986. [30] I. Dierking, Polymer-modified Liquid Crystals, Royal Society of Chemistry, 2019, Ch. 4, pp. 45-60. [31] A. D. Remenyuk, E. V. Astrova, R. F. Vitman, T. S. Perova, V. A. Tolmachev, “Alignment of liquid crystal E7 in composite photonic crystals based on single crystal silicon.” Proc. of SPIE 5825, pp. 400-407, 2005. [32] Norland Products: Norland Optical Adhesive 65. https://www.norlandprod.com/adhesives/NOA%2065.html [33] 古政鴻 ,利用PDLC之固體步階調控光圈的設計與製作,國立臺灣大學光電工程學研究所,碩士論文,2018。 [34] C. Rosa, F. Monteiro, J. Martins and J. Sotomayor, 'A transformerless power electronic converter topology for PDLC applications,' 2015 9th International Conference on Compatibility and Power Electronics (CPE), Costa da Caparica, 2015, pp. 359-363, doi: 10.1109/CPE.2015.7231101. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77219 | - |
| dc.description.abstract | 本實驗室提出利用3D列印製作可調變之反射元件並架設以太陽光為光源的可見光通訊系統。本論文的主題在於架設通訊系統,當中更優化先前實驗室所製作之元件,為了達到較好的通訊品質為目的。首先,元件優化部分:利用卡榫取代摺紙結構,藉由縮小單一面積改善列印大面積所造成之翹曲問題。而反射面則是利用鏡面取代鍍鋁的方式來增加反射率,最後,利用毛細現象的方法製作PDLC層作為光強度的調變機制後進行量測。我們在光學桌上利用白光(鹵素燈)與凸透鏡模擬太陽光量測優化後元件的對比度,其PDLC層大約在150 V達飽和且對比度為1.124相較於優化前(1.025)好。此外,ITO所造成之反射光仍是一大問題,不過仍可以適用亮暗調變 (OOK) 之應用。 系統架設部分我們利用Matlab將字串轉為ASCII的二進位形式並以NRZ編碼設計訊號且連接至訊號產生器,另一方面我們搭載了1 kHz的弦波使PDLC能有效率的操作。接收端則以工業相機設置低解析度(高幀數)錄製,最後利用Matlab進行影像分析與解調。期間我們還利用望遠鏡將系統實際架設在太陽光下進行測試,並且評估中遠距通訊的傳輸品質,在我們定義的誤碼率下推測最遠距離大約為45公尺。 本研究所製作反射元件的創新特色為:利用3D列印製作元件,可以客製化尺寸大小且容易調整,其規格可配合市售之鏡子列印框架,重量輕巧方便攜帶;再者,其使用PDLC進行調變,可透過電壓直接進行調變,相對於機械式調變如斬光器輕薄且易製作;最後,以再生能源的太陽光為通訊目標,在室外提供無光源配置的被動元件,加上元件的回射特性可實現動態的可見光通訊。 | zh_TW |
| dc.description.abstract | Visible light communication (VLC) has an indispensable role to play in communications industry. We harbor the belief that it can bring us a tremendous change due to the license-free, high security and immunity to electromagnetic interference. In the thesis, we present a 3D-printed 6.7*7.5 cm-scale tunable reflecting components, corner cube retro-reflector (CCR), and draw a comparison between previous device and optimized one. The new CCR is assembled from a structure of a joggle joint instead of origami structure; simultaneously, we replace Al by mirror as a reflector layer. As for PDLC, it is analogous to the previous one; ultimately, contrast ratio between the On-state and Off-state can reach 1.124 at 150 V. By applying voltage to drive the PDLC on the CCR and using Non-Return-To-Zero encoding (NRZ) to build waveform can achieve signal transmission. The intensity of the light at the RX is used to return the 0 and 1 of the original signals; finally, our system’s maximum transmission distance can be inferred to 45 m. We harbor the idea that by using 3D printing and sunlight to build communication system can reap huge benefits: renewable energy, high security, lightweight device, low cost, and a timesaving process. The target of our communication is to be served in outdoor and provide high data rate, potentially enabling motive visible light communication. The features can ameliorate the whole work efficiency and environmental protection, so we pour attention to do the research in it. We have published several papers, and hope to rich notions in this area. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:51:25Z (GMT). No. of bitstreams: 1 U0001-2801202114081600.pdf: 4972910 bytes, checksum: 3d31b2bf2300fcf4ada752f4e9279de3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xi Chapter 1. 緒論 1 1.1 前言 1 1.2 可見光通訊 1 1.2.1 LED光源 2 1.2.2 太陽光源 3 1.3 反射元件與光訊號調變 4 1.4 通訊系統與編碼解碼 8 Chapter 2. 設計理念與元件優化基礎 15 2.1 3D印表機介紹 15 2.2 文獻回顧 16 2.2.1 線材選擇(ABS與PLA比較) 16 2.2.2 摺紙結構 17 2.2.3 真空金屬鍍膜 19 2.3 卡榫結構與反射面 20 2.4 PDLC調變層 23 2.5 元件優化結果 26 Chapter 3. CCR的設計、製作與量測 27 3.1 CCR尺寸設計與結構 27 3.2 PDLC調變層製作 30 3.3 CCR的光學量測 34 3.4 總結與討論 37 Chapter 4. 系統架設與分析 39 4.1 系統建置 39 4.1.1 調變與編碼 40 4.1.2 PDLC直流、交流驅動 41 4.1.3 工業巷機影像接收端分析 44 4.2 分析中遠距離 46 4.3 中遠距離量測問題討論與總結 53 Chapter 5. 結論與未來展望 54 5.1 結論 54 5.2 未來展望 55 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 可見光通訊 | zh_TW |
| dc.subject | 卡榫結構 | zh_TW |
| dc.subject | 高分子分散型液晶 (PDLC) | zh_TW |
| dc.subject | 太陽光通訊 | zh_TW |
| dc.subject | 立方角回射器 (CCR) | zh_TW |
| dc.subject | 系統架設 | zh_TW |
| dc.subject | corner-cube retroreflector (CCR) | en |
| dc.subject | visible light communication (VLC) | en |
| dc.subject | 3D-printing | en |
| dc.subject | polymer-dispersed liquid crystal (PDLC) | en |
| dc.subject | sunlight communication | en |
| dc.title | 以3D列印之高分子分散型液晶元件架設太陽光通訊系統 | zh_TW |
| dc.title | Sunlight Communication System Built with 3D-Printed PDLC-Based Components | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁傑(Ren-Jei Chung),孫家偉(Chia-Wei Sun) | |
| dc.subject.keyword | 3D列印,可見光通訊,卡榫結構,高分子分散型液晶 (PDLC),太陽光通訊,立方角回射器 (CCR),系統架設, | zh_TW |
| dc.subject.keyword | visible light communication (VLC),3D-printing,polymer-dispersed liquid crystal (PDLC),sunlight communication,corner-cube retroreflector (CCR), | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202100229 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-02-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2801202114081600.pdf 未授權公開取用 | 4.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
