Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物產業傳播暨發展學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor岳修平zh_TW
dc.contributor.advisorHsiu-Ping Yuehen
dc.contributor.author呂明心zh_TW
dc.contributor.authorMing-Hsin Luen
dc.date.accessioned2021-07-10T21:51:06Z-
dc.date.available2024-08-16-
dc.date.copyright2019-08-18-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAinsworth, L. (2001). Task analysis. In J. Noyes & M. Bransby (Eds.), People in control (pp. 117-132). London, England: Institution of Electrical Engineers.
Annett, J., & Duncan, K. D. (1967). Task analysis and training design. Occupational Psychology, 41, 211-221.
Avilés-López, E., García-Macías, J. A., & Villanueva-Miranda, I. (2010). Developing ambient intelligence applications for the assisted living of the elderly. Paper presented at the the 2nd International Conference on Ambient Systems Networks and Technologies, Ontario, Canada.
Balkrishnan, R. (2005). The importance of medication adherence in improving chronic-disease related outcomes: what we know and what we need to further know. Medical Care, 43(6), 517-520.
Bastawrous, A., Rono, H. K., Livingstone, I. A., Weiss, H. A., Jordan, S., Kuper, H., & Burton, M. J. (2015). Development and validation of a smartphone-based visual acuity test (peek acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmology, 133(8), 930-937.
Baumann, J. F. (1988). Reading assessment: An instructional decision making perspective. Columbus: Merrill.
Beck, D. M., & Lavie, N. (2005). Look here but ignore what you see: effects of distractors at fixation. Journal of Experimental Psychology: Human perception and performance, 31(3), 592-607.
Bligård, L.-O., & Osvalder, A.-L. (2014). Predictive use error analysis–Development of AEA, SHERPA and PHEA to better predict, identify and present use errors. International Journal of Industrial Ergonomics, 44(1), 153-170.
Bonanni, L., Lee, C.-H., & Selker, T. (2005). Attention-based design of augmented reality interfaces. Paper presented at the CHI'05 extended abstracts on Human factors in computing systems, Oregon, USA.
Boron, J. B., Rogers, W. A., & Fisk, A. D. (2013). Everyday memory strategies for medication adherence. Geriatric Nursing, 34(5), 395-401.
Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4-7.
Cartwright-Finch, U., & Lavie, N. (2007). The role of perceptual load in inattentional blindness. Cognition, 102(3), 321-340.
Cebulla, A. (2013). Projection-based augmented reality. Paper presented at the Distributed Systems Seminar FS2013, Zürich, Switzerland.
Chang-Hua Hospital (2015). Customize my medicine bag to speak. Retrieved from. Retrieved from http://www.chhw.mohw.gov.tw/?aid=302&page_name=detail&iid=127
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and instruction, 8(4), 293-332.
Chandler, P., & Sweller, J. (1992). The split‐attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233-246.
Chang, L.-H., Shibata, K., Andersen, G. J., Sasaki, Y., & Watanabe, T. (2014). Age-related declines of stability in visual perceptual learning. Current Biology, 24(24), 2926-2929.
Chen, C. M., Chen, C. Y., Chen, H. Y., & Koo, M. (2017). Knowledge of cold syrup and the Five Core Competencies of Medication Use. Journal of Medicine and Health, 6(1), 61-73.
Chen, S. Y. (2012). Information design on drug bags used in Taiwan (Unpublished master’s dissertation). National Chiao Tung University, Hsinchu, Taiwan.
Cheng, K.-H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
Craik, F. I. (2000). Age-related changes in human memory. In D. Park & N. Schwarz (Eds.), Cognitive aging: A primer (pp. 75-92). Philadelphia, PA: Psychology Press.
Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In F. I. M. Craik & S. Trehub (Eds.), Aging and cognitive processes (pp. 191-211). New York: Plenum.
Dywan, J., & Murphy, W. E. (1996). Aging and inhibitory control in text comprehension. Psychology and aging, 11(2), 199-206.
Embrey, D. E. (1986). SHERPA: A systematic human error reduction and prediction approach. Paper presented at the International Meeting on Advances in Nuclear Power Systems, Knoxville, Tennessee.
Fadlilah, A. A. S., Iftadi, I., & Jauhari, W. A. (2019). Use error analysis using predictive use error analysis (PUEA) on operation process of batik solo trans. Paper presented at the The 4th International Conference on Industrial, Mechanical, Electrical, and Chemical Engineering.
Feiner, S. K. (2002). Augmented reality: A new way of seeing. Scientific American, 286(4), 48-55.
Ferreira, J. M., Galato, D., & Melo, A. C. (2015). Medication regimen complexity in adults and the elderly in a primary healthcare setting: determination of high and low complexities. Pharmacy practice, 13(4) , 659. doi: 10.18549/PharmPract.2015.04.659
Fink, N., Cartee, N., & Pak, R. (2014). Using focus groups to examine prospective memory strategies in the medication management of older adults. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 58, No. 1, pp. 165-169). Sage CA: Los Angeles, CA: SAGE Publications.
George, J., Phun, Y.-T., Bailey, M. J., Kong, D. C., & Stewart, K. (2004). Development and validation of the medication regimen complexity index. Annals of Pharmacotherapy, 38(9), 1369-1376.
Grier, R. A. (2015, September). How high is high? A meta-analysis of NASA-TLX global workload scores. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting(Vol. 59, No. 1, pp. 1727-1731). Sage CA: Los Angeles, CA: SAGE Publications.
Guerrero E., Lu M. H., Yueh H. P., Lindgren H. (2019) Design Principles and Action Reflection for Agent-Based Assistive Technology. In: Koch F. et al. (eds) Artificial Intelligence in Health. AIH 2018. Lecture Notes in Computer Science, 11326, 84-98.
Hart, S. G. (2006, October). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, No. 9, pp. 904-908). Sage CA: Los Angeles, CA: Sage publications.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (Advances in psychology, Vol. 52, pp. 139–183). Amsterdam: North-Holland.
Hayes, T. L., Hunt, J. M., Adami, A., & Kaye, J. A. (2006). An electronic pillbox for continuous monitoring of medication adherence. Paper presented at the Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE.
Hervás, R., Garcia-Lillo, A., & Bravo, J. (2011). Mobile augmented reality based on the semantic web applied to ambient assisted living. Paper presented at the International Workshop on Ambient Assisted Living, Torremolinos-Málaga, Spain.
Houts, P. S., Doak, C. C., Doak, L. G., & Loscalzo, M. J. (2006). The role of pictures in improving health communication: a review of research on attention, comprehension, recall, and adherence. Patient Education and Counseling, 61(2), 173-190.
Howell, E. H., Senapati, A., & Gorodeski, E. Z. (2013). Patients hospitalized for heart failure have difficulties managing medicationsdespite reported self-confidence. Journal of Cardiac Failure, 19(8), S87.
Hsueh, W. H. (2005). The effect of animation and speech for elder people in learning (Unpublished master’s dissertation).I-Shou University, Kaohsiung, Taiwan.
Hu, M. H. (2010). New choice of a screening tool for cognitive function: The SLUMS test. The Journal of Long-Term Care, 14(3), 267-276.
Huang, F. S. (2012). Psychology of aging. Taipei, Taiwan: Shi Da Book.
Hurd, P., & Blevins, J. (1984). Aging and the color of pills. The New England journal of medicine, 310(3), 202.
Hurd, P. D., & Butkovich, S. L. (1986). Compliance problems and the older patient: Assessing functional limitations. Drug Intelligence & Clinical Pharmacy, 20(3), 228–231.
James, W. (2012). The principles of psychology: Vol. 1. New York: Dover Publications.
Jameson, J. P., & VanNoord, G. R. (2001). Pharmacotherapy consultation on polypharmacy patients in ambulatory care. Annals of Pharmacotherapy, 35(7-8), 835-840.
Jyrkkä, J., Enlund, H., Korhonen, M. J., Sulkava, R., & Hartikainen, S. (2009). Polypharmacy status as an indicator of mortality in an elderly population. Drugs & aging, 26(12), 1039-1048.
Kahneman, D. (1973). Attention and effort (Vol. 1063). New Jersey: Prentice-Hall Inc.
Kai-Li, C., Chang, C.-M., Ching-Huey, C., & Huang, M.-C. (2018). Information reception and expectations among hospitalized elderly patients in Taiwan: A pilot study. Journal of Nursing Research, 26(3), 199-206.
Kemper, S., McDowd, J., & Kramer, A. E. (2006). Eye movements of young and older adults while reading with distraction. Psychology and aging, 21(1), 32.
Kim, S., & Dey, A. K. (2009, April). Simulated augmented reality windshield display as a cognitive mapping aid for elder driver navigation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 133-142). ACM.
Kotlikoff, L. J., & Burns, S. (2005). The coming generational storm: What you need to know about America’s economic future. London: The MIT Press.
Kwon, J. U., Lee, E. S., & Ahn, S. C. (2016). Projector-camera based remote assistance system for the elderly: Design issues and implementation. Paper presented at the 2016 IEEE/SICE International Symposium on System Integration, Sapporo, Japan.
Labor, M. o. (2008). Employment challenge and strategy for middle-aged and elderly employees. Retrieved from http://book.mol.gov.tw/image/no_15/01.pdf
Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human perception and performance, 21(3), 451-468.
Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82.
Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143-148.
Lavie, N., & De Fockert, J. W. (2003). Contrasting effects of sensory limits and capacity limits in visual selective attention. Perception and Psychophysics, 65(2), 202-212.
Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339.
Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception and Psychophysics, 56(2), 183-197.
Lera, F. J., Rodríguez, V., Rodríguez, C., & Matellán, V. (2014). Augmented reality in robotic assistance for the elderly. Paper presented at the 2nd International Technology Robotics Applications, Spain.
Li, N. T., Tseng, B. L., & Tseng, S. Y. (2008). Improving medication safety-Research on patient-centered improvement of medicine bags. The Journal of Pharmacy, 24(3), 16-24.
Liang, S. (2015). Research proposal on reviewing augmented reality applications for supporting ageing population. Procedia manufacturing, 3, 219-226.
Liang, S. (2016). Design principles of augmented reality focusing on the ageing population. Paper presented at the 30th International BCS Human Computer Interaction Conference: Fusion!, Poole, UK.
Lin, Y. Y. (2015). OCR-based Mobile Medication Prescription Bag Reader (Unpublished master’s dissertation). National Taiwan University of Science and Technology, Taipei.
Lin, S.-Y., & Yeh, S.-L. (2014). Attentional load and the consciousness of one’s own name. Consciousness and Cognition, 26, 197–203.
Lo Bianco, M., Pedell, S., & Renda, G. (2016). A health industry perspective on augmented reality as a communication tool in elderly fall prevention. Paper presented at the International Symposium on Interactive Technology and Ageing Populations, Kochi, Japan.
Lo, Y. L., & Lee, C. F. (2014). Icon recognition of the medicine bag in Taiwan. Geriatric Nursing, 34(5), 395-401.
Lu, M. H., & Yueh, H. P. (2015). A Usability Study of the Automatic Ticket Vending Machines for the Middle-aged and Elderly Patrons: The Case of the Taipei Mass Rapid Transit System. Journal of Library and Information Studies, 13(2), 67-97.
Luchins, A. S. (1942). Mechanization in problem solving: The effect of einstellung. Psychological Monographs, 54(6), i-95.
Marteniuk, R. G. (1976). Information processing in motor skills. Dubuque, Iowa: Wm. C. Brown.
Matthews, T., Dey, A. K., Mankoff, J., Carter, S., & Rattenbury, T. (2004). A toolkit for managing user attention in peripheral displays. Paper presented at the 17th annual ACM symposium on User interface software and technology. Santa Fe, NM, USA.
Mayer, R. E. (2001). Multimedia Learning. New York: Cambridge University press.
Maylor, E. A., & Lavie, N. (1998). The influence of perceptual load on age differences in selective attention. Psychology and Aging, 13(4), 563-573.
McDaniel, M. A., Einstein, G. O., Stout, A. C., & Morgan, Z. (2003). Aging and maintaining intentions over delays: Do it or lose it. Psychology and Aging, 18(4), 823-835.
McDonald-Miszczak, L., Neupert, S. D., & Gutman, G. (2009). Does cognitive ability explain inaccuracy in older adults’ self-reported medication adherence? Journal of Applied Gerontology, 28(5), 560-581.
MedSnap. (2016). Retrieved from https://medsnap.com/medsnap-id/
Meichenbaum, D., & Turk, D. C. (1987). Facilitating treatment adherence: A practitioner's guidebook. Boston, MA: Springer US.
Merriam, S. B., & Caffarella, R. (1991). Learning in adulthood. San Francisco, CA: Jossey-Bass.
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: a class of displays on the reality-virtuality continuum. Proceedings of SPIE Vol. 2351, Telemanipulator and Telepresence Technologies (pp. 282–292).
Ministry of Economic Affairs. (2017). Korea's senior human resources policy. Retrieved from http://itriexpress.blogspot.tw/2017/09/blog-post_54.html
Ministry of Health and Welfare. (2013). 2013 The top 10 health insurance drug usages in older adults. Retrieved from https://www.nhi.gov.tw/Resource/news/658_%E9%99%84%E8%A1%A83.pdf
Ministry of Labor. (2008). Employment challenge and strategy for middle-aged and elderly employees. Retrieved from http://book.mol.gov.tw/image/no_15/01.pdf
Morley, J., & Tumosa, N. (2002). Saint Louis University mental status examination (SLUMS). Aging Successfully, 12(1), 4.
Morrell, R. W., Mayhorn, C. B., & Bennett, J. (2000). A survey of World Wide Web use in middle-aged and older adults. Human Factors, 42(2), 175-182.
Murphy, G., Groeger, J. A., & Greene, C. M. (2016). Twenty years of load theory—Where are we now, and where should we go next? Psychonomic bulletin & review, 23(5), 1316-1340.
Nahl, D. (2007). Social–biological information technology: An integrated conceptual framework. Journal of the American Society for Information Science and Technology, 58(13), 2021-2046.
Norman, D. A. (1981). Categorisation of action slips. Psychological Review, 88(1), 1-15.
Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429-434.
Paas, F. G., & Van Merriënboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122-133.
Pak, R., Rogers, W. A., & Fisk, A. D. (2006). Aging and visual attention: The effect of perceptual load on dual-task performance. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 50, No. 2, pp. 205-209). Sage CA: Los Angeles, CA: Sage Publications..
Peek Vision Ltd. (2017). Peek apps. Retrieved from https://www.peekvision.org/peek-apps/
Qato, D. M., Alexander, G. C., Conti, R. M., Johnson, M., Schumm, P., & Lindau, S. T. (2008). Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. Jama, 300(24), 2867-2878.
Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press.
Rehrl, K., Häusler, E., Steinmann, R., Leitinger, S., Bell, D., & Weber, M. (2012). Pedestrian navigation with augmented reality, voice and digital map: results from a field study assessing performance and user experience. In G. Gartner & F. Ortag (Eds.), Advances in Location-Based Services. Lecture Notes in Geoinformation and Cartography(pp. 3-20). Berlin, Heidelberg, Springer.
Salthouse, T. A. (1992). Reasoning and spatial abilities. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 167-211). Hillsdale, NJ: Erlbaum.
Salthouse, T. A., & Prill, K. A. (1988). Effects of aging on perceptual closure. The American Journal of Psychology, 101(2), 217-238.
Saracchini, R., Catalina-Ortega, C., & Bordoni, L. (2015). A mobile augmented reality assistive technology for the elderly. Comunicar, 23(45), 65-74.
Scialfa, C. T. (2002). The role of sensory factors in cognitive aging research. Canadian Journal of Experimental Psychology, 56(3), 153-163.
Senders, J. W., & Moray, N. P. (1991). Human error. Hillsdale: NJ: LEA.
Shepherd, A. (1998). HTA as a framework for task analysis. Ergonomics, 41(11), 1537-1552.
Sonntag, D. (2015). Kognit: Intelligent cognitive enhancement technology by cognitive models and mixed reality for dementia patients. Paper presented at the 2015 AAAI Fall Symposium Series, Arlington, Virginia.
Stanton, N. A. (2005). Systematic human error reduction and prediction approach. In N. A. Stanton, A. Hedge, E. Salas, H. Hendrick, & K. Brookhaus (Eds.), Handbook of human factors and ergonomics methods (pp. 371–378). London: Taylor & Francis.
Stanton, N. (2007). Human-error identification in human-computer interaction. In A. E. Sears (Ed.), The human-computer interaction handbook (pp. 163-174). U.S.A: CRC Press.
Stawarz, K., Rodríguez, M. D., Cox, A. L., & Blandford, A. (2016). Understanding the use of contextual cues: design implications for medication adherence technologies that support remembering. Digital Health, 2. doi.org/10.1177/2055207616678707
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123-138.
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer Science+Business Media, LLC.
Tao, C. C. (2011). The role of context in mediated message processing: Cognitive versus situated perspectives. Journal of Communication Research and Practice, 1(2), 37-47.
Tariq, S., Tumosa, N., Chibnall, J., Perry III, H., & Morley, J. (2006). The Saint Louis University mental status (SLUMS) examination for detecting mild cognitive impairment and dementia is more sensitive than the mini-mental status examination (MMSE)–a pilot study. The American Journal of Geriatr Psychiatry, 14(11), 900-910.
Thoma, V., & Lavie, N. (2013). Perceptual load effects on processing distractor faces indicate face-specific capacity limits. Visual Cognition, 21, 1053–1076.
Tsai, M. H., Lu, F. H., & Zhang, J. M. (2015). The introduction of gerontology. Taipei, Taiwan: Wu Nan.
Van der Lubbe, R. H., & Verleger, R. (2002). Aging and the Simon task. Psychophysiology, 39(1), 100-110.
Van Gerven, P. W., Paas, F., Merriënboer, J. J., & Schmidt, H. G. (2002). Cognitive load theory and aging: Effects of worked examples on training efficiency. Learning and Instruction, 12(1), 87-105.
Van Gerven, P. W., Pass, F., Van Merriënboer, J. J., & Schmidt, H. G. (2000). Cognitive load theory and the acquisition of complex cognitive skills in the elderly: Towards an integrative framework. Educational Gerontology, 26(6), 503-521.
Vrijens, B., De Geest, S., Hughes, D. A., Przemyslaw, K., Demonceau, J., Ruppar, T., Dobbels, F., Fargher, E., Morrison, V., Lewek, P., Matyjaszczyk, M., Mshelia, C., Clyne, W., Aronson, K. J., & Lewek, P. (2012). A new taxonomy for describing and defining adherence to medications. British journal of clinical pharmacology, 73(5), 691-705.
Wang, H. Y., Lin, M. C., Lin, L. C., Liao, L. C., & Tseng, M. J. (2013). Medication behavior survey with pharmacist’s intervention on pharmaceutical care. Social Pharmacy and Pharmacy Ethics, 29(3), 149-154.
Wang, Y. C., Tseng, E. T., Wang, M. F., Wang, S. M., & Han, H. M. (2013). Medication safety among elderly at home. The Journal of Long-Term Care, 17(1), 41-56.
Wickens, C. D. (1992). Engineering psychology and human performance. New York: Harper Collins.
World Health Organization (2003). Adherence to long-term therapies: evidence for action. Retrieved from http://www.who.int/chp/knowledge/publications/adherence_report/en/
Welford, A. T. (1985). Changes of performance with age: An Overview. In N. Charness (Ed.), Aging and Human Performance (pp. 333-365). New York: John Wiley & Sons, Ltd.
Welsh, T. N., Weeks, D. J., Chua, R., & Goodman, D. (2007). Perceptual-motor interaction: some implications for HCI. In A. E. Sears (Ed.), The human-computer interaction handbook (pp. 27-41). U.S.A: CRC Press.
Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2016). Engineering psychology and human performance. London: Routledge Taylor & Francis Group.
Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors, 35(2), 263-281.
Yang, S. S., & Huang, C. W. (2013). The Research of pillbox usability for the elderly. Paper presented at the 2013 Orange Benificience- International Design Conference of Smart Living for Elderly, New Taipei City, Taiwan.
Zajicek, M. (2000). Interface support for elderly people with impaired sight and memory. Paper presented at the 6th European Research Consortium for Informatics and Mathematics (ERCIM), Portugal.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77212-
dc.description.abstract隨著年齡增長所導致所的疾病發生,高齡者將面對越來越複雜的用藥情況。因年齡而產生的認知退化將可能使高齡者用藥風險提高,並降低用藥遵從性。本研究旨在探討擴增實境科技輔助對高齡者用藥遵從績效與用藥認知負荷的影響。本研究聚焦於使用分藥藥盒進行分藥管理之任務,並依據資訊處理歷程、感知負荷與認知負荷之相關理論設計分藥輔助擴增實境科技,針對高齡者使用該科技執行分藥任務進行實驗、觀察、問卷調查與訪談。

本研究招募54位55至74歲的高齡受試者,參與使用擴增實境科技進行分藥任務之實驗。該實驗以三種不同介面設計為組間設計因子,包含感知擴增介面(Perceptual augmentation interface, PAI)、反應擴增介面(Response augmentation interface, RAI),以及處理歷程擴增介面(Processing augmentation interface, PRAI)。在分藥任務上,分別以兩種難易程度為組內設計因子,包含中用藥複雜度與高用藥複雜度。受試者須先接受心智狀態與視力評估,符合正常狀態才能開始實驗。首先受試者須填寫用藥能力與經驗問卷,接著進行分藥與介面操作的練習,完成練習後,便使用其中一種擴增實境介面分別進行中用藥複雜度與高用藥複雜度之分藥任務操作。兩次實驗操作完成後須分別填寫NASA Task Load Index,全部實驗完成後填寫 System Usability Scale與完成隨後訪談(follow-up interview)。

藉由描述性統計、無母數統計分析與質化觀察資料之分析發現,三種介面在用藥遵從績效與認知負荷上有所差異。其中以使用處理歷程擴增介面(PRAI)之用藥遵從績效最好,不僅能確保分藥結果的正確性,即使產生操作性的失誤也多能由系統互動來恢復。另一方面,不同的用藥複雜度會對用藥遵從績效與認知負荷產生差異。高用藥複雜度的分藥任務出現分藥結果錯誤的情況,操作失誤的情況也較多。在任務時間與任務負荷上也顯著高於中用藥複雜度的分藥任務。然而這些差異並不完全達統計上顯著。

為促進受試者能閱讀並理解用藥指示,進而整合過往經驗以建立系統與任務操作的基模,首要設計重點為感知輔助,此設計可藉由摘要(abstraction)與外生提示(exogenous cues)原則來達成。然而為確保分藥結果的正確性與降低任務過程中的操作性失誤,必須應用提示(notification)、轉換(transition)、內生提示(endogenous cues)與平行搜尋(parallel visual searching)的設計來提供完整的認知輔助設計,以讓受試者執行合適的回應行動(response execution)。另外也需要依據分藥任務的複雜度提供合適的輔助設計。在執行中用藥複雜度的任務時,雖然注意力容易集中,但卻也容易因為快速的學習經驗而疏忽當前任務狀況的評估,而產生操作錯誤,所以需要非持續但即時性的操作行為提示以減少操作性的失誤。而在執行高用藥複雜度的任務時,則能較謹慎評估任務現況與步驟,但也因此注意力容易分散而導致操作失誤。因此在高用藥複雜度任務的認知輔助上需要設計持續性的注意力分配引導機制,以及提供操作執行情況之回饋。

本研究之研究結果驗證分藥輔助擴增實境科技的不同設計以及用藥複雜度對於用藥遵從績效與認知負荷之影響。此研究結果不僅為高齡用藥輔助科技提供設計原則之建議,也補充資訊處理歷程、感知負荷理論與認知負荷理論之實證結果與理論應用之參考。
zh_TW
dc.description.abstractThe number of chronic conditions tends to raise with age, which results in an increased number of multiple-drug regimens for older adults. Age-related perceptual and cognitive impairments affect elderly patients’ unintentional non-adherence through the management of adherence, which raises the risk of health issues. The purpose of this study is to explore how the AR technology, which was designed in line with perceptual and cognitive theories affects the medication adherence performance and the cognitive load of allocating prescribed pills into pill dispensers and the design requirements in different medication regimen complexities.

This study conducted quasi-experiment, task observations, surveys, and interviews to collect the data. Fifty-four participants aged 55 to 74 years were recruited. Two one-factorial experiments are conducted. The first one is a between-subject design to explore the difference of medication adherence performance and cognitive load with using the treatments of perceptual augmentation interface (PAI), response augmentation interface (RAI), and processing augmentation interface (PRAI). The second one is a within-subject design to explore the difference of medication adherence performance and cognitive load when performing the medium and high regimen complexity tasks respectively. The participants were first required to take the evaluations of mental state and visual acuity. Second, they were asked to complete the questionnaires of competencies of medication use and medication experience and practice the using of the systems. Third, they were assigned to use one kind of treatment to perform the medication allocating tasks in both medium and high regimen complexity trails respectively. The NASA Task Load Index (NASA-TLX) was used to measure their task loads after preforming the medium and high complexity trails respectively. Finally, the participants were required to complete the System Usability Scales (SUS) and the follow-up interviews.

According to descriptive statistics, nonparametric statistics, and qualitative analysis, the results show the obvious differences in medication adherence performance and cognitive load with using the PAI, the RAI, and the PRAI. Using PRAI supports the greatest medication adherence performance and the lowest cognitive load of medication allocation tasks between the three treatments. Meanwhile, the differences in medication adherence performance and cognitive load showed between performing the medium and high regimen complexity trails as well. The errors, task time, and task load increase when the medication regimen complexity is high.

Different design principles are required to overcome the obstacles of using the pill dispensers for managing medication adherence. Reducing the perceptual load is the first importance so that the appropriate design principles are abstraction exogenous cues. In order to ensure the correct medication allocating, both perceptual and response supports are required. That is, applying design principles of notification, transition, endogenous cue, and parallel visual searching are demanded. In terms of different medication regimen complexity tasks, the results reflect the different design requirements for medication allocation tasks with medium and high medication regimen complexities respectively. The support designs of attention direction and correctness feedback are needed through the complete task process when performing the medication allocation task with high medication regimen complexity. In contrast, when performing the medium one, just a real-time feedback design for ensuring updated plan executions is satisfied.

This study proposed the design principles of AR technology for supporting medication allocation tasks. In addition, this study suggested the recommendations of applying the information processing model, the perceptual load theory, and the cognitive load theory as theoretical bases for design.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:51:06Z (GMT). No. of bitstreams: 1
ntu-108-F01630002-1.pdf: 6869619 bytes, checksum: 14fb52912fe6c2d54da500e699927509 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝 辭-----i

中文摘要-----ii

Abstract-----iv

Chapter One: Introduction-----1
1. Background-----1
2. Research Purpose-----4
3. Definition of the Terms-----5
3.1 Older Adult-----5
3.2 Mobile augmented reality-----6
3.3 Medication adherence performance-----7

Chapter Two: Review of Literature-----8
1. Management of adherence in older adults-----8
1.1 The process of management of adherence-----8
1.2 The behavior of medication allocating-----15
2. The effect of age-related perceptual and cognitive impairments on allocating medications into a pillbox-----20
2.1 Load theory of selective attention-----20
2.2 Visual-perceptual load impairment and information reception task-----23
2.3 Cognitive load impairment and information comprehension, recognition and response exaction task----26
2.4 Measuring cognitive load and performance-----32
3. Attention-based augmented reality for supporting medication allocating-----40
3.1 Introduction to augmented reality-----40
3.2 Cognitive-augmented reality for supporting adherence management-----44
4. Summary-----55

Chapter Three: Methodology-----61
1. Research Design-----61
2. The structure of the AR system-----62
3. Experiment Design-----63
3.1 Independent variable-----64
3.2 Dependent variable-----67
3.3 Participant Recruitment-----68
3.4 Material-----69
3.5 System facility-----77
3.6 Procedure-----77
4. Instrument-----79
4.1 Saint Louis University Mental Status (SLUMS) Examination-----79
4.2 Peek Acuity App-----81
4.3 Demographic form and medication experience questionnaire-----81
4.4 Medication Regimen Complexity Index-----81
4.5 Raw NASA Task Load Index (RTLX)-----82
4.6 System Usability Scale (SUS)-----82
5. Data analysis-----83
5.1 Questionnaire-----83
5.2 Task and error analysis-----83

Chapter Four: Result-----84
1. Reliability of the scales-----84
2. Participant information-----85
3.1 Demographic information-----85
3.2 Medication manage experience-----87
3.3 Homogeneity of the different treatment groups----91
3. Effects of different capacity augmentation interfaces on medication adherence performance-----93
3.1 Correctness of allocation-----93
3.2 Errors analysis-----94
4. Effects of different capacity augmentation interfaces on cognitive load-----105
4.1 Task time-----105
4.2 Task load-----106
5. Effects of different medication regimen complexities on medication adherence performance-----108
5.1 Correctness of allocation-----108
5.2 Proportion of errors-----109
5.3 Error type and cause-----111
6. Effects of different medication regimen complexities on cognitive load-----114
6.1 Task time-----114
6.2 Task load-----115
7. Usability and preference of the augmentation interfaces-----117
7.1 System Usability Scale-----117
7.2 Preference of design-----117
7.3 Suggestion of design-----122

Chapter Five: Discussion-----123
1. The capability augmentation interfaces support required information-----124
2. A completed information processing support is the key to design-----124
3. Different medication regimen complexities require different design supports-----128
4. Satisfaction of the capability augmentation interfaces-----130

Chapter Six: Conclusion, Suggestion and Limitation-----132
1. Conclusion-----132
2. Suggestions-----134
3. Limitation-----136
Reference-----138
Appendix-----157
Appendix 1: Saint Louis University Mental Status (SLUMS) Examination-----158
Appendix 2: Demographic form and medication experience questionnaire-----160
Appendix 3: Raw NASA Task Load Index (RTLX)-----166
Appendix 4: System Usability Scale (SUS)-----168
Appendix 5: Outline of follow-up interview-----169
Appendix 6: Table of error coding-----170
-
dc.language.isoen-
dc.title行動擴增實境對高齡者用藥績效影響之研究zh_TW
dc.titleThe Effect of Mobile Augmented Reality Treatment on Older Adults’ Medication Performanceen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee黃明月;徐新逸;陳姿伶;王淑美;黃揚名zh_TW
dc.contributor.oralexamcommittee;;;;en
dc.subject.keyword高齡者,分藥任務,擴增實境,用藥績效,感知負荷理論,認知負荷理論,zh_TW
dc.subject.keywordolder adults,medication allocation task,augmented reality,medication performance,perceptual load theory,cognitive load theory,en
dc.relation.page171-
dc.identifier.doi10.6342/NTU201903675-
dc.rights.note未授權-
dc.date.accepted2019-08-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物產業傳播暨發展學系-
顯示於系所單位:生物產業傳播暨發展學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
6.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved