請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77200完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳平 | zh_TW |
| dc.contributor.advisor | Richard Ping Cheng | en |
| dc.contributor.author | 陳庭萱 | zh_TW |
| dc.contributor.author | Ting-Hsuan Chen | en |
| dc.date.accessioned | 2021-07-10T21:50:34Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Chapter 1
1. Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561-563. 2. Davey, M. J.; O'Donnell, M. Mechanisms of DNA replication. Curr. Opin. Chem. Biol. 2000, 4, 581-586. 3. Conaway, J. W.; Shilatifard, A.; Dvir, A.; Conaway, R. C. Control of elongation by RNA polymerase II. Trends Biochem. Sci. 2000, 25, 375-380. 4. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 2002, 108, 557-572. 5. RA, W. How does HIV cause AIDS? Science 1993, 260, 1273-1279. 6. Gavin, A. C.; Aloy, P.; Grandi, P.; Krause, R.; Boesche, M.; Marzioch, M.; Rau, C.; Jensen, L. J.; Bastuck, S.; Dumpelfeld, B.; Edelmann, A.; Heurtier, M. A.; Hoffman, V.; Hoefert, C.; Klein, K.; Hudak, M.; Michon, A. M.; Schelder, M.; Schirle, M.; Remor, M.; Rudi, T.; Hooper, S.; Bauer, A.; Bouwmeester, T.; Casari, G.; Drewes, G.; Neubauer, G.; Rick, J. M.; Kuster, B.; Bork, P.; Russell, R. B.; Superti-Furga, G. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440, 631-636. 7. Pauling, L.; Corey, R. B. The planarity of the amide group in polypeptides. J. Am. Chem. Soc. 1952, 74, 3964. 8. Khoury, G. A.; Baliban, R. C.; Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 2011, 1, 90. 9. Walsh, C. T.; Garneau-Tsodikova, S.; Gatto, G. J., Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 2005, 44, 7342-7372. 10. Rothnagel, J. A.; Rogers, G. E. Citrulline in proteins from the enzymatic deimination of arginine residues. Methods Enzymol. 1984, 107, 624-631. 11. Wu, C.-H.; Weng, M.-H.; Chang, H.-C.; Li, J.-H.; Cheng, R. P. Effect of each guanidinium group on the RNA recognition and cellular uptake of Tat-derived peptides. Bioorg. Med. Chem. 2014, 22, 3016-3020. 12. Gyorgy, B.; Toth, E.; Tarcsa, E.; Falus, A.; Buzas, E. I. Citrullination: A posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 2006, 38, 1662-1677. 13. Wang, Y.; Wysocka, J.; Sayegh, J.; Lee, Y. H.; Perlin, J. R.; Leonelli, L.; Sonbuchner, L. S.; McDonald, C. H.; Cook, R. G.; Dou, Y.; Roeder, R. G.; Clarke, S.; Stallcup, M. R.; Allis, C. D.; Coonrod, S. A. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004, 306, 279-283. 14. Cuthbert, G. L.; Daujat, S.; Snowden, A. W.; Erdjument-Bromage, H.; Hagiwara, T.; Yamada, M.; Schneider, R.; Gregory, P. D.; Tempst, P.; Bannister, A. J.; Kouzarides, T. Histone deimination antagonizes arginine methylation. Cell 2004, 118, 545-553. 15. Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 1996, 273, 1678-1685. 16. Messias, A. C.; Sattler, M. Structural basis of single-stranded RNA recognition. Acc. Chem. Res. 2004, 37, 279-287. 17. Lazinski, D.; Grzadzielska, E.; Das, A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 1989, 59, 207-218. 18. Varani, G.; Nagai, K. RNA recognition by RNP proteins during RNA processing. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 407-445. 19. Kenan, D. J.; Query, C. C.; Keene, J. D. RNA recognition: towards identifying determinants of specificity. Trends Biochem. Sci. 1991, 16, 214-220. 20. Nagai, K.; Oubridge, C.; Jessen, T. H.; Li, J.; Evans, P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 1990, 348, 515-520. 21. Grishin, N. V. KH domain: one motif, two folds. Nucleic Acids Res. 2001, 29, 638-643. 22. Perez-Canadillas, J. M.; Varani, G. Recent advances in RNA-protein recognition. Curr. Opin. Struct. Biol. 2001, 11, 53-58. 23. Siomi, H.; Matunis, M. J.; Michael, W. M.; Dreyfuss, G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 1993, 21, 1193-1198. 24. Varani, G. RNA−Protein Intermolecular Recognition. Acc. Chem. Res. 1997, 30, 189-195. 25. Bartel, D. P.; Zapp, M. L.; Green, M. R.; Szostak, J. W. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 1991, 67, 529-536. 26. Salzano, G.; Torchilin, V. P. Intracellular Delivery of Nanoparticles with Cell Penetrating Peptides. Methods Mol. Biol. 2015, 1324, 357-368. 27. Vives, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010-16017. 28. Richard, J. P.; Melikov, K.; Vives, E.; Ramos, C.; Verbeure, B.; Gait, M. J.; Chernomordik, L. V.; Lebleu, B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003, 278, 585-590. 29. Schmidt, N.; Mishra, A.; Lai, G. H.; Wong, G. C. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010, 584, 1806-1813. 30. Mishra, A.; Lai, G. H.; Schmidt, N. W.; Sun, V. Z.; Rodriguez, A. R.; Tong, R.; Tang, L.; Cheng, J.; Deming, T. J.; Kamei, D. T.; Wong, G. C. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16883-16888. 31. Richard, J. P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L. V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005, 280, 15300-15306. 32. Futaki, S.; Nakase, I. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Acc. Chem. Res. 2017, 50, 2449-2456. 33. Ciobanasu, C.; Siebrasse, J. P.; Kubitscheck, U. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophys. J. 2010, 99, 153-162. 34. Calnan, B. J.; Biancalana, S.; Hudson, D.; Frankel, A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991, 5, 201-210. Chapter 2 1. RA, W. How does HIV cause AIDS? Science 1993, 260, 1273-1279. 2. Hu, W.-S.; Hughes, S. H. HIV-1 reverse transcription. Cold Spring Harb. Perspect. Med. 2012, 2, a006882. 3. Stevens, M.; De Clercq, E.; Balzarini, J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med. Res. Rev. 2006, 26, 595-625. 4. Aboul-ela, F.; Karn, J.; Varani, G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 1996, 24, 3974-3981. 5. Aboul-ela, F.; Karn, J.; Varani, G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J. Mol. Biol. 1995, 253, 313-332. 6. Karn, J.; Stoltzfus, C. M. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012, 2, a006916. 7. Clark, E.; Nava, B.; Caputi, M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 2017, 8, 27569-27581. 8. Verhoef, K.; Bauer, M.; Meyerhans, A.; Berkhout, B. On the role of the second coding exon of the HIV-1 Tat protein in virus replication and MHC class I downregulation. AIDS Res. Hum. Retroviruses 1998, 14, 1553-1559. 9. Calnan, B. J.; Biancalana, S.; Hudson, D.; Frankel, A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991, 5, 201-210. 10. Sheldon, M.; Ratnasabapathy, R.; Hernandez, N. Characterization of the inducer of short transcripts, a Human-Immunodeficiency-Virus Type-1 transcriptional element that activates the synthesis of short rnas. Mol. Cell. Biol. 1993, 13, 1251-1263. 11. Athanassiou, Z.; Dias, R. L.; Moehle, K.; Dobson, N.; Varani, G.; Robinson, J. A. Structural mimicry of retroviral tat proteins by constrained beta-hairpin peptidomimetics: ligands with high affinity and selectivity for viral TAR RNA regulatory elements. J. Am. Chem. Soc. 2004, 126, 6906-6913. 12. Wu, C.-H.; Chen, Y.-P.; Mou, C.-Y.; Cheng, R. P. Altering the Tat-derived peptide bioactivity landscape by changing the arginine side chain length. Amino Acids 2013, 44, 473-480. 13. Wu, C.-H.; Weng, M.-H.; Chang, H.-C.; Li, J.-H.; Cheng, R. P. Effect of each guanidinium group on the RNA recognition and cellular uptake of Tat-derived peptides. Bioorg. Med. Chem. 2014, 22, 3016-3020. 14. Wu, C.-H.; Chen, Y.-P.; Liu, S.-L.; Chien, F.-C.; Mou, C.-Y.; Cheng, R. P. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues. Org. Biomol. Chem. 2015, 13, 11096-11104. 15. Wu, P.-Y. Effect of citrulline side chain length on β-hairpin stability, and towards targeting HIV-related RNA motifs. M.S. Thesis, National Taiwan University, 2015. 16. Cheng, R. P.; Weng, Y.-J.; Wang, W.-R.; Koyack, M. J.; Suzuki, Y.; Wu, C.-H.; Yang, P.-A.; Hsu, H.-C.; Kuo, H.-T.; Girinath, P.; Fang, C.-J. Helix formation and capping energetics of arginine analogs with varying side chain length. Amino Acids 2012, 43, 195-206. 17. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 1967, 6, 1948-1954. 18. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to measure and predict the molar absorption-coefficient of a protein. Protein Sci. 1995, 4, 2411-2423. Chapter 3 1. Gupta, B.; Levchenko, T. S.; Torchilin, V. P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 2005, 57, 637-651. 2. Schwarze, S. R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S. F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999, 285, 1569-1572. 3. Wu, C.-H.; Chen, Y.-P.; Wu, S.-H.; Hung, Y.; Mou, C.-Y.; Cheng, R. P. Enhanced non-endocytotic uptake of mesoporous silica nanoparticles by shortening the peptide transporter arginine side chain. ACS Appl. Mater. Interfaces 2013, 5, 12244-12248. 4. Suzuki, T.; Futaki, S.; Niwa, M.; Tanaka, S.; Ueda, K.; Sugiura, Y. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 2002, 277, 2437-2443. 5. Wender, P. A.; Galliher, W. C.; Goun, E. A.; Jones, L. R.; Pillow, T. H. The design of guanidinium-rich transporters and their internalization mechanisms. Adv. Drug Deliv. Rev. 2008, 60, 452-472. 6. Mitchell, D. J.; Kim, D. T.; Steinman, L.; Fathman, C. G.; Rothbard, J. B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 2000, 56, 318-325. 7. Schmidt, N.; Mishra, A.; Lai, G. H.; Wong, G. C. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010, 584, 1806-1813. 8. Mann, D. A.; Frankel, A. D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 1991, 10, 1733-1739. 9. Richard, J. P.; Melikov, K.; Vives, E.; Ramos, C.; Verbeure, B.; Gait, M. J.; Chernomordik, L. V.; Lebleu, B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003, 278, 585-590. 10. Schmid, S. L.; Carter, L. L. ATP is required for receptor-mediated endocytosis in intact cells. J. Cell Biol. 1990, 111, 2307-2318. 11. Vives, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010-16017. 12. Futaki, S.; Nakase, I. Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization. Acc. Chem. Res. 2017, 50, 2449-2456. 13. Richard, J. P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L. V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005, 280, 15300-15306. 14. Ferrari, A.; Pellegrini, V.; Arcangeli, C.; Fittipaldi, A.; Giacca, M.; Beltram, F. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol. Ther. 2003, 8, 284-294. 15. Ensoli, B.; Buonaguro, L.; Barillari, G.; Fiorelli, V.; Gendelman, R.; Morgan, R. A.; Wingfield, P.; Gallo, R. C. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 1993, 67, 277-287. 16. Wu, C.-H.; Chen, Y.-P.; Mou, C.-Y.; Cheng, R. P. Altering the Tat-derived peptide bioactivity landscape by changing the arginine side chain length. Amino Acids 2013, 44, 473-480. 17. Fischer, R.; Mader, O.; Jung, G.; Brock, R. Extending the applicability of carboxyfluorescein in solid-phase synthesis. Bioconjugate Chem. 2003, 14, 653-660. 18. Cheng, R. P.; Weng, Y.-J.; Wang, W.-R.; Koyack, M. J.; Suzuki, Y.; Wu, C.-H.; Yang, P.-A.; Hsu, H.-C.; Kuo, H.-T.; Girinath, P.; Fang, C.-J. Helix formation and capping energetics of arginine analogs with varying side chain length. Amino Acids 2012, 43, 195-206. 19. Wu, C.-H.; Chen, Y.-P.; Liu, S.-L.; Chien, F.-C.; Mou, C.-Y.; Cheng, R. P. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues. Org. Biomol. Chem. 2015, 13, 11096-11104. 20. Schmidt, N. W.; Lis, M.; Zhao, K.; Lai, G. H.; Alexandrova, A. N.; Tew, G. N.; Wong, G. C. Molecular basis for nanoscopic membrane curvature generation from quantum mechanical models and synthetic transporter sequences. J. Am. Chem. Soc. 2012, 134, 19207-19216. 21. Sjöback, R.; Nygren, J.; Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta, Pt. A: Mol. Spectrosc. 1995, 51, L7-L21. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77200 | - |
| dc.description.abstract | 愛滋病是由人類免疫缺乏病毒(HIV)所導致,而關於病毒以及治療方式的研究也在近幾十年來不斷有新結果。其中一種可能的治療方式是以干擾Tat蛋白與TAR RNA之間的交互作用力,進而影響病毒的繁衍;這樣的構思已應用在先前的研究中並設計出一種以Tat蛋白為模版的胜肽—TatC4。TatC4具有和TAR RNA的高度結合力,但其專一性不足,造成TatC4抑制Tat-TAR交互作用的能力不如預期。所以本次研究是希望透過更改胺基酸側鏈的長度與電荷,可以增進Tat衍生胜肽對TAR RNA的專一性。
實驗方式是以凝膠電泳(Electrophoretic mobility shift assay)來代表胜肽與TAR RNA的結合度;根據Tat衍生胜肽與對照組的比較,新設計出來的胜肽中有部分衍生胜肽對TAR RNA具有比較高的專一性。同時也使用流式細胞儀,針對與TAR RNA有較高親和性與專一性的Tat衍生胜肽進行細胞穿膜實驗,結果顯示Tat衍生胜肽皆具有較高的穿膜能力。由此可知,側鏈長度與電荷的更動不只影響胜肽與TAR RNA的結合度,也同時影響胜肽的細胞穿膜能力。 | zh_TW |
| dc.description.abstract | HIV (Human Immunodeficiency virus) has been studied for decades, and research on developing drugs for treating HIV infection has been ongoing. Interfering with the interaction between TAR RNA and Tat-protein might be a therapeutically viable strategy, which gave rise to the development of peptide TatC4 to bind TAR RNA in the Cheng lab (Org. Biomol. Chem. 2015, 13, 11096). Unfortunately, the ability of TatC4 to inhibit Tat-TAR mediated protein production didn’t meet our expectations. The results suggested that the specificity for binding TAR remained to be improved. This lack of specificity could perhaps be remediated by simultaneously changing the side chain length and charge of the Arg residues in the Tat-derived peptide. Accordingly, a series of Tat-derived peptides with Arg side chain modifications have been synthesized by solid phase methods and purified. The binding of the peptides to TAR RNA was investigated by EMSA (electrophoretic mobility shift assay). Some of the Tat-derived peptides showed enhanced TAR RNA binding affinity and specificity. Four peptides with higher binding specificity or affinity were chosen for cellular uptake studies, which all showed higher cellular uptake compared to the native peptide. Overall, the research should contribute to developing molecules to treat HIV infections. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:50:34Z (GMT). No. of bitstreams: 1 ntu-108-R06223133-1.pdf: 5645923 bytes, checksum: 9f923c0ecd70d9073d1fc3af669dcec8 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii Abstract iii Table of Contents v List of Figures vii List of Schemes ix List of Tables x Abbreviation i Chapter 1 1 1-1. Central Dogma of Molecular Biology 2 1-2. Proteins 2 1-3. Post-Translational Modification 3 1-4. RNA Recognition 4 1-5. Cell Penetration 6 1-6. Thesis Overview 7 1-7. Reference 9 Chapter 2 13 2-1. Introduction 14 HIV TAR RNA and Tat Protein 14 Side Chain Effects on TAR RNA Binding of Tat-Derived Peptides 15 Design and Development of TatC4 17 2-2. Results and Discussion 18 Peptide Design 18 Peptide Synthesis 23 Electrophoretic Mobility Shift Assays 34 2-3. Conclusion 48 2-4. Future Aspects 48 2-5. Acknowledgements 49 2-6. Experimental Section 49 2-7. Reference 86 Chapter 3 89 3-1. Introduction 90 Cell Penetrating Peptides 90 Cellular Uptake of Tat Peptide 91 3-2. Results and Discussion 92 Peptide Design 92 Peptide Synthesis 93 Cellular Uptake Assays 98 Cytotoxicity 107 3-3. Conclusion 108 3-4. Acknowledgements 109 3-5. Experimental Section 109 3-6. Reference 127 | - |
| dc.language.iso | en | - |
| dc.subject | TAR核糖核酸 | zh_TW |
| dc.subject | 人類免疫缺乏病毒 | zh_TW |
| dc.subject | Tat蛋白 | zh_TW |
| dc.subject | 專一性 | zh_TW |
| dc.subject | 側鏈 | zh_TW |
| dc.subject | Tat protein | en |
| dc.subject | HIV | en |
| dc.subject | TAR RNA | en |
| dc.subject | Side chain | en |
| dc.subject | Specificity | en |
| dc.subject | Cellular uptake | en |
| dc.title | 側鏈修飾對Tat衍生胜辨認核糖核酸與細胞穿透之影響 | zh_TW |
| dc.title | Effect of Side Chain Modifications of Tat-derived Peptides on RNA Recognition and Cellular Uptake | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪嘉呈;黃人則;陳佩燁 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 人類免疫缺乏病毒,Tat蛋白,TAR核糖核酸,側鏈,專一性, | zh_TW |
| dc.subject.keyword | HIV,Tat protein,TAR RNA,Side chain,Specificity,Cellular uptake, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU201903850 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-16 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 5.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
