請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7719
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王錦堂 | |
dc.contributor.author | Yi-Rou Lu | en |
dc.contributor.author | 呂怡柔 | zh_TW |
dc.date.accessioned | 2021-05-19T17:51:13Z | - |
dc.date.available | 2022-09-08 | |
dc.date.available | 2021-05-19T17:51:13Z | - |
dc.date.copyright | 2017-09-08 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | 1. Pan, Y.J., et al., Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol, 2008. 46(7): p. 2231-40.
2. Batra, A.S.S.a.H.V., Identification of Klebsiella Pneumoniae by Capsular Polysaccharide Polyclonal Antibodies. International Journal of Chemical Engineering and Applications, 2011. 2(2): p. 130-134. 3. Hsu, C.R., et al., Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One, 2013. 8(8): p. e70092. 4. Pan, Y.J., et al., Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS One, 2013. 8(12): p. e80670. 5. Pan, Y.J., et al., Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother, 2015. 59(2): p. 1038-47. 6. Pan, Y.J., et al., Klebsiella Phage PhiK64-1 Encodes Multiple Depolymerases for Multiple Host Capsular Types. J Virol, 2017. 91(6). 7. MATSEN., J.M., I.J.A. SPINDLER., and R. BLOSSER., Characterization of Klebsiella Isolates from Natural Receiving Waters and Comparison with Human Isolates. APPLIED MICROBIOLOGY, 1974. 28(4): p. 672-678. 8. BAGLEY., S.T., et al., Isolation of Klebsielleae from Within Living Wood. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,, 1978. 36(1): p. 178-185. 9. LINE., M.A. and M.W. LOUTIT, Non-symbiotic Nitrogen-fixing Organisms from Some NewZealand Tussock-grassland Soils Journal of General MicrobioZogy, 1971. 66: p. 309-318 10. EDBERG., S.C., V. PISCITELLI., and M. CARTTER., Phenotypic Characteristics of Coliform and Noncoliform Bacteria from a Public Water Supply Compared with Regional and National Clinical Species. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986. 52(3): p. 474-478. 11. NIEMELA., S.I., et al., Microbial Incidence in Upper Respiratory Tracts of Workers in the Paper Industry. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985. 50(1): p. 163-168. 12. Lau, H.Y., G.B. Huffnagle, and T.A. Moore, Host and microbiota factors that control Klebsiella pneumoniae mucosal colonization in mice. Microbes Infect, 2008. 10(12-13): p. 1283-90. 13. Gutierrez., R.C.d., et al., Microbial Flora Variations in the Respiratory Tract of Mice. Mem Inst Oswaldo Cruz, 1999. 94(5): p. 701-707. 14. Siu, L.K., et al., Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J Clin Microbiol, 2011. 49(11): p. 3761-5. 15. Magill, S.S., et al., Multistate point-prevalence survey of health care-associated infections. N Engl J Med, 2014. 370(13): p. 1198-208. 16. Lederman, E.R. and N.F. Crum, Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol, 2005. 100(2): p. 322-31. 17. Rahimian., J., et al., Pyogenic Liver Abscess: Recent Trends in Etiology and Mortality. Clinical Infectious Diseases, 2004. 39: p. 1654-1659. 18. Tsai, F.C., et al., Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis, 2008. 14(10): p. 1592-600. 19. Chung, D.R., et al., Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infect, 2007. 54(6): p. 578-83. 20. Paterson, D.L. and R.A. Bonomo, Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev, 2005. 18(4): p. 657-86. 21. Yigit, H., et al., Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother, 2001. 45(4): p. 1151-61. 22. Eftekhar., F. and Z. Naseh., Extended-spectrum β-lactamase and carbapenemase production among burn and non-burn clinical isolates of Klebsiella pneumoniae Iran J Microbiol., 2015. 7(3): p. 144-149. 23. Kang., C.-I., et al., Community-Acquired versus Nosocomial Klebsiella pneumoniae Bacteremia: Clinical Features, Treatment Outcomes, and Clinical Implication of Antimicrobial Resistance. J Korean Med Sci 2006. 21: p. 816-22. 24. Murdoch, S.L., et al., The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol, 2011. 193(21): p. 6057-69. 25. Green, E.R. and J. Mecsas, Bacterial Secretion Systems: An Overview. Microbiol Spectr, 2016. 4(1). 26. AR., R., The Type VI Secretion System: A Multipurpose Delivery System with a Phage-Like Machinery Mol Plant Microbe Interact, 2011. 24(7): p. 751-757. 27. Pukatzki, S., et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A, 2006. 103(5): p. 1528-33. 28. Mougous, J.D., et al., A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006. 312(5779): p. 1526-30. 29. Alvarez-Martinez, C.E. and P.J. Christie, Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev, 2009. 73(4): p. 775-808. 30. Cornelis, G.R., The type III secretion injectisome. Nat Rev Microbiol, 2006. 4(11): p. 811-25. 31. Pukatzki, S., et al., Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15508-13. 32. Hood, R.D., et al., A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010. 7(1): p. 25-37. 33. Schwarz, S., et al., Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog, 2010. 6(8): p. e1001068. 34. MacIntyre, D.L., et al., The Vibrio cholerae type VI secretion system displays antimicrobial properties. PNAS, 2010. 107(45): p. 19520-19524. 35. Alcoforado Diniz, J., Y.C. Liu, and S.J. Coulthurst, Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol, 2015. 17(12): p. 1742-51. 36. Shrivastava, S. and S.S. Mande, Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One, 2008. 3(8): p. e2955. 37. Boyer, F., et al., Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics, 2009. 10: p. 104. 38. Filloux, A., A. Hachani, and S. Bleves, The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology, 2008. 154(Pt 6): p. 1570-83. 39. Zoued, A., et al., Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta, 2014. 1843(8): p. 1664-73. 40. Basler, M., Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci, 2015. 370(1679). 41. Leiman, P.G., et al., Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A, 2009. 106(11): p. 4154-9. 42. Kanamaru., S., et al., Structure of the cell-puncturing device of bacteriophage T4. Nature, 2002. 415(31): p. 553-557. 43. Pietrosiuk, A., et al., Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem, 2011. 286(34): p. 30010-21. 44. Durand, E., et al., VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol, 2014. 22(9): p. 498-507. 45. Weber, B.S., et al., The Secrets of Acinetobacter Secretion. Trends Microbiol, 2017. 46. Alteri, C.J. and H.L. Mobley, The Versatile Type VI Secretion System. Microbiol Spectr, 2016. 4(2). 47. Hachani, A., T.E. Wood, and A. Filloux, Type VI secretion and anti-host effectors. Curr Opin Microbiol, 2016. 29: p. 81-93. 48. Schwarz., S., et al., VgrG-5 Is a Burkholderia Type VI Secretion System-Exported Protein Required for Multinucleated Giant Cell Formation and Virulence. Infection and Immunity, 2014. 82(4): p. 1445-1452. 49. Ma, A.T., et al., Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe, 2009. 5(3): p. 234-43. 50. Jiang, F., et al., A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe, 2014. 15(5): p. 600-10. 51. Russell, A.B., et al., Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 2011. 475(7356): p. 343-7. 52. Carpenter, B.M., J.M. Whitmire, and D.S. Merrell, This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun, 2009. 77(7): p. 2590-601. 53. ESCOLAR., L.A., J. PE´REZ-MARTI´N., and V.C.D. LORENZO., Opening the Iron Box : Transcriptional Metalloregulation by the Fur Protein. JOURNAL OF BACTERIOLOGY, 1999. 181(20): p. 6223–6229. 54. Chakraborty, S., et al., Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem, 2011. 286(45): p. 39417-30. 55. Brunet, Y.R., et al., An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet, 2011. 7(7): p. e1002205. 56. Lucchini, S., et al., H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog, 2006. 2(8): p. e81. 57. Fang., F.C. and S. Rimsky., New Insights into Transcriptional Regulation by H-NS. Curr Opin Microbiol. , 2008. 11(2): p. 113–120. 58. Navarre, W.W., et al., Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev, 2007. 21(12): p. 1456-71. 59. Zhang, J., et al., A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol, 2014. 59(5): p. 557-64. 60. Cui, S., et al., H-NS binding to evpB and evpC and repressing T6SS expression in fish pathogen Edwardsiella piscicida. Arch Microbiol, 2016. 198(7): p. 653-61. 61. Salomon, D., J.A. Klimko, and K. Orth, H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiology, 2014. 160(Pt 9): p. 1867-73. 62. Brunet, Y.R., et al., H-NS Silencing of the Salmonella Pathogenicity Island 6-Encoded Type VI Secretion System Limits Salmonella enterica Serovar Typhimurium Interbacterial Killing. Infect Immun, 2015. 83(7): p. 2738-50. 63. Lapouge, K., et al., Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol, 2008. 67(2): p. 241-53. 64. Goodman, A.L., et al., Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev, 2009. 23(2): p. 249-59. 65. Coggan., K.A. and M.C. Wolfgang., Global Regulatory Pathways and Cross-talk Control Pseudomonas aeruginosa Environmental Lifestyle and Virulence Phenotype. Curr Issues Mol Biol, 2012. 14(2): p. 47-70. 66. Li, K., et al., SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa. MBio, 2013. 4(6): p. e00419-13. 67. Ng, W.L. and B.L. Bassler, Bacterial quorum-sensing network architectures. Annu Rev Genet, 2009. 43: p. 197-222. 68. Parsek, M.R. and E.P. Greenberg, Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005. 13(1): p. 27-33. 69. Zheng., J., et al., Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. PNAS, 2010. 107(49): p. 21128–21133. 70. Ishikawa, T., et al., Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One, 2009. 4(8): p. e6734. 71. Ishikawa, T., et al., Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun, 2012. 80(2): p. 575-84. 72. Mougous, J.D., et al., Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol, 2007. 9(7): p. 797-803. 73. A. J. Varshavsky, et al., Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein. Nucleic Acids Research, 1977. 4(8): p. 2725–2745. 74. Hommais F1, et al., Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Molecular Microbiology, 2001. 40(1): p. 20-36. 75. Winardhi, Ricksen S., J. Yan, and Linda J. Kenney, H-NS Regulates Gene Expression and Compacts the Nucleoid: Insights from Single-Molecule Experiments. Biophysical Journal, 2015. 109(7): p. 1321-1329. 76. Picker, M.A. and H.J. Wing, H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species. Genes (Basel), 2016. 7(12). 77. Singh, K., J.N. Milstein, and W.W. Navarre, Xenogeneic Silencing and Its Impact on Bacterial Genomes. Annu Rev Microbiol, 2016. 70: p. 199-213. 78. Grainger, D.C., Structure and function of bacterial H-NS protein. Biochem Soc Trans, 2016. 44(6): p. 1561-1569. 79. Lang, B., et al., High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res, 2007. 35(18): p. 6330-7. 80. Park, H.S., et al., Novel role for a bacterial nucleoid protein in translation of mRNAs with suboptimal ribosome-binding sites. Genes Dev, 2010. 24(13): p. 1345-50. 81. Sarris, P.F., et al., Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect Genet Evol, 2011. 11(1): p. 157-66. 82. Fang, C.T., et al., A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med, 2004. 199(5): p. 697-705. 83. Lin, T.L., et al., Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae. Sci Rep, 2016. 6: p. 31644. 84. Hsieh, P.F., et al., The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence. Virulence, 2016. 7(5): p. 587-601. 85. Collins SJ, et al., Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A, 1978. 75(5): p. 2458-62. 86. Ian D. Trayner, et al., Changes in antigen expression on differentiating HL60 cells treated with dimethylsulphoxide, all-trans retinoic acid, α1,25-dihydroxyvitamin D3 or 12-O-tetradecanoyl phorbol-13-acetate. Leukemia Research 1998. 22: p. 537–547. 87. Deshpande, A., et al., Quantitative analysis of the effect of cell type and cellular differentiation on protective antigen binding to human target cells. FEBS Lett, 2006. 580(17): p. 4172-5. 88. Miyata, S.T., V. Bachmann, and S. Pukatzki, Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol, 2013. 62(Pt 5): p. 663-76. 89. Bleumink-Pluym, N.M., et al., Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity. PLoS Pathog, 2013. 9(5): p. e1003393. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7719 | - |
dc.description.abstract | 細菌會利用不同的致病因子(virulence factor)來抵禦或逃脫宿主的免疫攻擊,並提升在宿主環境中生存或造成威脅的能力,而細菌分泌蛋白質的過程為一種與宿主互動的重要策略。已知革蘭氏陰性菌演化出六型分泌系統(type I to type VI secretion system, T1SS to T6SS),而第六型分泌系統是最近期所發現,會透過組裝精密的Hcp-VgrG-PAAR突刺裝置,將作用蛋白質(effector protein)運輸至目標細胞或環境中。據研究指出高於25%的革蘭氏陰性菌帶有構成T6SS核心構造之13個保守基因,而本篇研究對象克雷伯氏肺炎桿菌NTUH-K2044也被發現有T6SS locus-I和locus-III的存在,故想深入探討其T6SS是否具有功能,且會受何種未知機制所調控。
本研究結果顯示,T6SS相關基因(hcp、vgrG1、vgrG2、icmF1和icmF2)廣泛分布於不同來源的克雷伯氏肺炎桿菌臨床菌株,其中以分離自社區型化膿性肝膿瘍(PLA)菌株同時帶有此五個基因之比率為最高(32/42, 76.19%),但隨機挑選的47株hcp+vgrG1+vgrG2+icmF1+icmF2+菌株,包括野生型NTUH-K2044,並未在西方墨點法偵測到Hcp蛋白質的表現,故認為克雷伯氏肺炎桿菌之T6SS在一般實驗室培養條件下可能受細菌內未知機制所壓抑。接續利用即時定量聚合酶鏈鎖反應分析發現H-NS蛋白質會在轉錄層次上負向調控hcp、vgrG1和vgrG2 mRNA表現量,且以西方墨點法在hns基因剔除株中可偵測到Hcp蛋白質的表現。另外,野生型NTUH-K2044在與真核細胞(HL-60, Caco-2 cells)作用後,其hns mRNA表現量雖有顯著降低,但並無提升T6SS相關基因的表現,顯示T6SS在NTUH-K2044與真核細胞作用之下會受到更嚴謹且未知的機制所調控。接著利用凝膠阻滯分析法確認H-NS可直接與T6SS locus-I上之啟動子序列或是基因編碼序列相互結合,藉此抑制T6SS相關基因的表現。最後,在與Caco-2細胞貼附實驗中,發現T6SS相關基因會影響NTUH-K2044對腸道細胞的貼附能力,而其中詳細的分子機制為何仍需更深入的研究。 | zh_TW |
dc.description.abstract | Bacteria can use different virulence factors to resist or escape host immune response, even to enhance survival ability in host environment. Currently, Gram-negative bacteria have been known to evolve six types of secretion system (T1SS to T6SS), wherein the type six secretion system (T6SS) was discovered recently, which can transport effector proteins to target cells or environment through assembling a delicate Hcp-VgrG-PAAR needle-like structure. Several studies have indicated that up to 25% of Gram-negative bacteria genome includes 13 conserved genes, which encoded the core components of T6SS. In fact, two contiguous putative T6SS loci (locus-I, locus-III) have been found in the Klebsiella pneumoniae NTUH-K2044 genome in a previous study. Therefore, the aim of this study is to investigate whether the NTUH-K2044 have functional T6SS or not, and to identify the unknown regulation mechanisms of its T6SS.
Our results showed that five of the T6SS genes (hcp, vgrG1, vgrG2, icmF1, icmF2) that were highly related to the assembly and function of T6SS were widespread in various clinical isolates of K. pneumoniae, and strains isolated from community-acquired pyogenic liver abscess (PLA) have a higher prevalence (32/42, 76.19%). The Hcp protein was detected neither in randomly selected 47 hcp+vgrG1+ vgrG2+icmF1+icmF2+ strains nor in the wild-type NTUH-K2044. Thus, we assumed that T6SS was repressed via unknown mechanisms in general in vitro culture conditions. Next, we found that transcription levels of hcp, vgrG1 and vgrG2 were suppressed by H-NS via real-time PCR analysis. The Hcp protein expression was significantly increased in the hns deletion mutant strain. The hns transcription level of the NTUH-K2044 was significantly decreased after interacting with both HL-60 and Caco-2 cells, however, the expression of T6SS-related genes did not increased, revealing that a more stringent and unknown mechanisms behind when interacting with eukaryotic cells. In addition, the gel retardation assay confirmed that H-NS could bind to the promoter sequences or coding region of T6SS locus-I, indicating the suppression of transcription of T6SS-related genes is through direct binding. At last, we found that T6SS-related genes were involved in the NTUH-K2044 adhesion to Caco-2 intestinal cells from adherence assays, while the detailed molecular mechanisms still need further study. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:51:13Z (GMT). No. of bitstreams: 1 ntu-106-R04445116-1.pdf: 2802663 bytes, checksum: 543185f8eed0076bd88760e1b7d66a91 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract V 目錄 VII 表目錄 X 圖目錄 XI 第一章、 緒論 1 1.1 克雷伯氏肺炎桿菌(Klebsiella pneumoniae)與其臨床重要性 1 1.2 革蘭氏陰性細菌獨有之分泌系統(Secretion System) 2 1.3 第六型分泌系統(Type VI Secretion System, T6SS) 3 1.4 細菌對第六型分泌系統之調控機制 6 1.4.1 鐵離子調控機制 6 1.4.2 H-NS蛋白質的調控機制 6 1.4.3 轉錄後調控機制:The Gac/Rsm pathway 7 1.4.4 群體感應(Quorum sensing)調控機制 7 1.4.5 轉譯後調控機制:Threonine phosphorylation pathway 8 1.5 H-NS (Histone-like nucleoid structuring protein)蛋白質 8 1.6 研究動機 9 第二章、 材料方法 10 2.1 材料 10 2.1.1 克雷伯氏肺炎桿菌之臨床菌株(clinical strains) 10 2.1.2 其他菌株與質體(plasmids) 10 2.1.3 培養基(media) 11 2.1.4 抗生素(antibiotics) 11 2.1.5 引子(primers) 12 2.1.6 HL-60細胞株培養與分化 12 2.1.7 Caco-2細胞株培養 12 2.2 方法 13 2.2.1 聚合酶鏈鎖反應(Polymerase chain reaction;PCR) 13 2.2.2 聚丙烯醯胺膠體電泳(Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis;SDS-PAGE)與蛋白質染色(Coomassie blue staining) 14 2.2.3 西方墨點法(Western Blot) 17 2.2.4 萃取克雷伯氏肺炎桿菌之RNA 19 2.2.5 反轉錄定量聚合酶鏈鎖反應(Quantitative real-time reverse-transcription PCR;RT-qPCR) 20 2.2.6 克雷伯氏肺炎桿菌與真核細胞株交互作用模式 22 2.2.7 Caco-2細胞貼附試驗(Cell adherence assay) 23 2.2.8 NTUH-K2044 之T6SS locus-I之kp1_2392(impB) ~ kp1_2400(vgrG1)操縱子(operon)位置分析 24 2.2.9 表現及純化克雷伯氏肺炎桿菌之H-NS蛋白質 24 2.2.10 凝膠阻滯分析(Gel retardation assay) 27 第三章、 結果 29 3.1 研究策略 29 3.2 克雷伯氏肺炎桿菌臨床菌株之T6SS相關基因盛行率 29 3.3 克雷伯氏肺炎桿菌臨床菌株之Hcp蛋白質的表現 30 3.4 NTUH-K2044對T6SS的調控機制 30 3.4.1 尋找NTUH-K2044之H-NS蛋白質 31 3.4.2 NTUH-K2044之H-NS對T6SS相關基因或蛋白質表現的影響 31 3.4.3 NTUH-K2044與真核細胞株交互作用對T6SS相關基因表現的影響 32 3.5 NTUH-K2044 之T6SS locus-I之kp1_2392(impB) ~ kp1_2400 (vgrG1)操縱子位置分析 32 3.6 凝膠阻滯分析(Gel retardation assay)實驗 33 3.7 野生型NTUH-K2044及其T6SS基因剔除株與Caco-2細胞之貼附實驗(Cell adherence assay) 34 第四章、 總結與討論 36 第五章、 參考文獻 57 附錄一、鐵離子濃度對NTUH-K2044之vgrG1及vgrG2 mRNA表現量的影響 64 附錄二、suhB基因剔除株(△kp1_0314和△kp1_1580)之Hcp蛋白質表現 65 | |
dc.language.iso | zh-TW | |
dc.title | 克雷伯氏肺炎桿菌第六型分泌系統之調控 | zh_TW |
dc.title | Regulation of type 6 secretion system (T6SS) in Klebsiella pneumoniae | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝世良,張永祺(yungchiychang@ntu.edu.tw),潘怡均 | |
dc.subject.keyword | 克雷伯氏肺炎桿菌,第六型分泌系統,H-NS蛋白質,凝膠阻滯分析法, | zh_TW |
dc.subject.keyword | Klebsiella pneumoniae,Type six secretion system,H-NS,Gel retardation assay, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201702520 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 2.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。