Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77183
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 許書豪 | zh_TW |
dc.contributor.author | 張益銘 | zh_TW |
dc.contributor.author | Yi-Ming Chang | en |
dc.date.accessioned | 2021-07-10T21:49:46Z | - |
dc.date.available | 2024-07-12 | - |
dc.date.copyright | 2019-08-28 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Ho, C.M., et al., Nationwide longitudinal analysis of acute liver failure in taiwan. Medicine (Baltimore), 2014. 93(4): p. e35.
2. 蔡崇榮, 陳宗賢, 李明陽 <急性肝衰竭之診斷與處理.PDF>. 內科學誌, 2018:29:292-304 3. Nourjah, P., et al., Estimates of acetaminophen (Paracetomal)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf, 2006. 15(6): p. 398-405. 4. Bernal, W., et al., Acute liver failure. Lancet, 2010. 376(9736): p. 190-201. 5. Athuraliya, T.N. and A.L. Jones, Prolonged N-acetylcysteine therapy in late acetaminophen poisoning associated with acute liver failure--a need to be more cautious? Crit Care, 2009. 13(3): p. 144. 6. Keeffe, E.B., Liver transplantation: current status and novel approaches to liver replacement. Gastroenterology, 2001. 120(3): p. 749-62. 7. Szabo, G. and S. Bala, MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol, 2013. 10(9): p. 542-52. 8. Thakral, S. and K. Ghoshal, miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther, 2015. 15(2): p. 142-50. 9. Hsu, S.H., et al., Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest, 2012. 122(8): p. 2871-83. 10. Meng, Z., et al., miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 2010. 52(6): p. 2148-57. 11. Jenkins, R.H., et al., Transforming growth factor beta1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem J, 2012. 443(2): p. 407-16. 12. Hino, K., et al., Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation. Rna, 2008. 14(7): p. 1433-42. 13. Krutzfeldt, J., et al., MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1alpha) in adult liver and controls expression of frizzled-6. Hepatology, 2012. 55(1): p. 98-107. 14. Morimoto, A., et al., An HNF4alpha-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem, 2017. 292(25): p. 10574-10585. 15. Nie, H., et al., MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(12): p. 3087-3094. 16. Howell, L.S., et al., MiR-122 and other microRNAs as potential circulating biomarkers of drug-induced liver injury. Expert Rev Mol Diagn, 2018. 18(1): p. 47-54. 17. Nagano, T., et al., Liver-specific microRNAs as biomarkers of nanomaterial-induced liver damage. Nanotechnology, 2013. 24(40): p. 405102. 18. Wang, B., et al., MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle, 2015. 14(7): p. 1046-58. 19. Khella, H.W., et al., miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis, 2013. 34(10): p. 2231-9. 20. Krupa, A., et al., Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol, 2010. 21(3): p. 438-47. 21. Pichiorri, F., et al., Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell, 2010. 18(4): p. 367-81. 22. Bao, C., et al., NF-kappaB signaling relieves negative regulation by miR-194 in hepatocellular carcinoma by suppressing the transcription factor HNF-1alpha. Sci Signal, 2015. 8(387): p. ra75. 23. Krattinger, R., et al., microRNA-192 suppresses the expression of the farnesoid X receptor. Am J Physiol Gastrointest Liver Physiol, 2016. 310(11): p. G1044-51. 24. Roy, S., et al., Down-regulation of miR-192-5p protects from oxidative stress-induced acute liver injury. Clin Sci (Lond), 2016. 130(14): p. 1197-207. 25. Tag, C.G., et al., Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp, 2015(96). 26. Yoon, E., et al., Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J Clin Transl Hepatol, 2016. 4(2): p. 131-42. 27. Bhushan, B., et al., Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am J Pathol, 2014. 184(11): p. 3013-25. 28. Heidari, R., et al., Dithiothreitol supplementation mitigates hepatic and renal injury in bile duct ligated mice: Potential application in the treatment of cholestasis-associated complications. Biomed Pharmacother, 2018. 99: p. 1022-1032. 29. Tang, H., et al., MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/beta-catenin signaling pathway. Dig Liver Dis, 2019. 30. Zhao, H.J., et al., MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway. Theranostics, 2014. 4(12): p. 1193-208. 31. Cai, H.K., et al., MicroRNA-194 modulates epithelial-mesenchymal transition in human colorectal cancer metastasis. Onco Targets Ther, 2017. 10: p. 1269-1278. 32. Zhao, H., et al., miR-192/215-5p act as tumor suppressors and link Crohn's disease and colorectal cancer by targeting common metabolic pathways: An integrated informatics analysis and experimental study. J Cell Physiol, 2019. 33. Dossa, A.Y., et al., Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol, 2016. 310(2): p. G81-92. 34. Fu, T., et al., FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell, 2019. 176(5): p. 1098-1112.e18. 35. Yu, J.H., et al., Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-kappaB signalling pathway. Int J Oncol, 2019. 54(3): p. 879-892. 36. Botta, D., et al., Modulating GSH synthesis using glutamate cysteine ligase transgenic and gene-targeted mice. Drug Metab Rev, 2008. 40(3): p. 465-77. 37. Nielsen, K.O., et al., Hepatitis B virus upregulates host microRNAs that target apoptosis-regulatory genes in an in vitro cell model. Exp Cell Res, 2018. 371(1): p. 92-103. 38. Qi, S., et al., ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS One, 2012. 7(6): p. e38842. 39. Bai, J.X., et al., Tamoxifen represses miR-200 microRNAs and promotes epithelial-to-mesenchymal transition by up-regulating c-Myc in endometrial carcinoma cell lines. Endocrinology, 2013. 154(2): p. 635-45. 40. Sun, Y., et al., Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. Chin J Cancer, 2015. 34(1): p. 28-40. 41. Kim, D.Y., et al., Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease. Faseb j, 2019. 33(2): p. 2870-2884. 42. Shin, D.J. and L. Wang, Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors. Handb Exp Pharmacol, 2019. 43. Gong, J., et al., Sweroside ameliorated carbon tetrachloride (CCl4)-induced liver fibrosis through FXR-miR-29a signaling pathway. J Nat Med, 2019. 44. Adorini, L., M. Pruzanski, and D. Shapiro, Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today, 2012. 17(17-18): p. 988-97. 45. Bandiera, S., et al., miR-122--a key factor and therapeutic target in liver disease. J Hepatol, 2015. 62(2): p. 448-57. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77183 | - |
dc.description.abstract | 藥物過量、膽汁滯留、酒精過量、病毒感染是急性肝損傷的危險因素。目前,治療的功效取決於受損後肝細胞是否能成功再生與正常發揮功能。本論文我們針對miR-192/194在肝損傷中的功能特別感興趣。MiR-192和miR-194高度表達於肝臟中,且與肝臟成熟、非酒精性肝炎的形成有關,並且可當作肝損傷後的血清生化指標;過去的研究指出miR-192/194為P53之下游基因且扮演抑癌基因的角色。此外,miR-192/194已知可透過抑制Mdm2與NF-κB訊息傳遞來抑制癌細胞的生長。臨床研究亦發現,miR-192的降低常見於損傷的肝臟,且細胞株實驗證實可以保護因過氧化壓力造成的損傷。綜上,我們假設調降miR-192/194可以保護肝臟免受肝損傷,並利用miR-192/194基因突變小鼠以證實此假設並研究相關分子機制。
首先,我們發現miR-192/194基因突變小鼠發育正常且肝臟具有正常型態和功能,顯示miR-192/194的缺失不影響正常肝臟功能。接著,我們利用突變小鼠測試因膽汁淤積或藥物誘導造成的肝損傷模型。在膽汁淤積模型中,我們在小鼠身上進行膽管結紮手術(Bile Duct Ligation, BDL)引起膽汁滯留和不可逆之門靜脈病變。在藥物誘導模型中,我們則透過腹腔注射乙醯胺酚(N-acetyl-para-aminophenol, APAP)誘導肝細胞壞死和中央靜脈(central vein)周圍短暫可逆之病變。在這兩種傷害模型中,我們皆發現突變小鼠之肝臟壞死區域較正常小鼠範圍小,且經乙醯胺酚誘導處理後24及48小時的突變小鼠之肝損傷血清生化指標也顯著降低。此結論顯示,降低肝細胞miR-192/194可保護肝臟免受急性肝損傷。 為進一步了解其機制,我們透過西方墨點法及即時定量RT-PCR (qPCR)檢測基因的表現量。首先,在急性肝損傷下,已知為miR-192/194的目標基因TRIM23和NR1H4,其mRNA或蛋白質表現呈現上升的趨勢;有趣的是,此狀況不見於正常之突變小鼠中,顯示miR-192/194的缺失僅在肝臟損傷下影響下游基因表現。此外,許多與細胞週期相關的基因,如CCND1, CDC2等,以及與抗細胞凋亡的基因,如XIAP, ZEB2均於損傷後在突變小鼠肝臟中大量表現,顯示miR-192/194的缺失促進細胞再生與存活,此可解釋為何突變小鼠的肝臟損傷較控制組為輕微。為進一步證實此發現,我們過度表達miR-194於HepG2細胞,發現細胞核內的P65表現量下降,且同為miR-194目標基因及活化NF-κB的上游基因TRIM23和NR1H4,以及與細胞存活正相關的基因,均有不同程度的下降。總結以上的結果,我們認為miR-192/194的基因缺失可能透過上調NR1H4與NF-κB訊息傳遞路徑,以及下游之維持細胞存活的基因,降低小鼠肝臟損傷的程度。 | zh_TW |
dc.description.abstract | Several risk factors were involved in the development of acute liver injury (ALI), including drug-overdose, bile retention, alcohol overdose, and viral infection. Currently, the efficacy of ALI treatment depends on whether the hepatocytes successfully regenerate and function properly after the injury. Here we investigated the biological role of miR-192/194 in ALI. MiR-192 and miR-194 are both highly expressed in liver and used as serum biomarker for ALI. Previous studies have shown that miR-192/194 function as critical tumor suppressors via stabilizing P53 and repressing NFB signaling in hepatocarcinogenesis. However, its role in the progression of ALI remains to be elucidated. Interestingly, clinical research have shown that down-regulation of miR-192 protects against ALI caused by oxidative stress. We hypothesized that miR-192/194 depletion may protect liver from ALI. MiR-192/194 mutant mice were used to test this hypothesis and study related molecular mechanisms.
RNA analysis determined that hepatic miR-192/194 was significantly reduced to below ~99% in mutant mice compared to control. However, histochemical and serum analysis demonstrated that mutant liver without ALI preserved normal structures and metabolic functions in the context of miR-192/194 depletion. Next, mutant mice were tested with cholestasis- and drug-induced liver damages. In cholestasis-induced model, bile duct ligation (BDL) was conducted to induce bile retention and peri-portal lesion. In drug-induced model, necrosis around central vein was induced by intraperitoneal injection of N-acetyl-para-aminophenol (APAP). As a result, mutant mice exhibited lower mortality after BDL and smaller necrotic area after APAP challenge than control mice. Also, serum ALT was significantly less in mutant mice compared to that in control mice at 24 and 48 hours after APAP treatment. These data suggested that miR-192/194 depletion protected liver from acute liver injury. To further understand the mechanism, liver tissues were collected from both mutant and control mice at various time points after APAP treatment to profile gene expression. TRIM23 and NR1H4, two known miR-192/194 target genes, were both increased in mutant mice compared to control mice after APAP-induced injury. Previous studies have shown that TRIM23 and NR1H4 promoted survival of liver cells by positively regulating NFB signaling and cell cycle progression, respectively. Indeed, genes involved in cell cycle regulation, such as CCND1, CDC2, and in anti-apoptosis, such as XIAP and ZEB2, are expressed in a higher extent in mutant livers compared to control after injury, indicating that miR-192/194 depletion promotes cellular regeneration and survival. To verify if the upregulation of these genes in APAP-challenged mutant liver were resulted from miR-194 depletion, ectopic expression of miR-194 in HepG2 cells was performed by transfection and, as expected, leaded to global decrease of genes that were increased in mutant liver. Moreover, miR-194 overexpression reduced nuclear P65 expression in HepG2 cells, which again suggested that miR-194 serves as positive regulator of NFB signaling. Taken together, our study suggested that genetic depletion of miR-192/194 may elevate NR1H4 and NF-κB signaling to promote liver regeneration and survival after ALI. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:46Z (GMT). No. of bitstreams: 1 ntu-108-R06446007-1.pdf: 3800063 bytes, checksum: 1c1234898fa56fb4cfbf2d225718af3f (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要…………………………………………………………………………………i
英文摘要………………………………………………………………………………..ii 縮寫表……………………………………………………………………………….......iv 目錄…………………………………………………………………………………….viii 第一章 緒論…………………………………………………………………………...1 1.1 引言…………………………………………………………………………...1 1.2 微小核醣核酸在肝臟的功能……………………….......................................2 1.3 MiR-192/194在肝臟及其他器官中的功能…………………………………2 1.4 肝臟傷害模型………………………………………………………………...4 1.5 研究動機……………………………………………………………………...5 第二章 實驗材料……………………………………………………………………...6 2.1 實驗儀器……………………………………………………………………...6 2.2 實驗材料與試劑……………………………………………………………...6 2.2.1實驗動物均來自本院實驗動物中心…………………………………..6 2.2.2核醣核酸萃取(RNA)…………………………………………………...7 2.2.3反轉綠聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction, RT-PCR)……………………………………………………………7 2.2.4即時定量聚合酶連鎖反應(Real-time Quantitative PCR, q-PCR)……..7 2.2.5西方墨點法(Western blot assay)………………………………………..8 2.2.6石蠟包埋切片…………………………………………………………..9 2.2.7蘇木精-伊紅染色(Hematoxylin and Eosin stain, H&E stain)………….9 2.2.8免疫組織化學染色法(Immunohistochemistry, IHC)…………………..9 2.2.9去氧核醣核酸萃取(DNA)及測定基因型…………………………….10 2.2.10血清生化分析………………………………………………………..10 2.2.11細胞轉染……………………………………………………………..10 2.3實驗溶液配製………………………………………………………………...11 2.3.1實驗動物………………………………………………………………11 2.3.2反轉綠聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction, RT-PCR)…………………………………………………………..11 2.3.3西方墨點法(Western blot assay)………………………………………11 2.3.4石蠟包埋切片…………………………………………………………12 2.3.5蘇木精-伊紅染色(hematoxylin and eosin stain, H&E stain)…………12 2.3.6免疫組織化學染色法(immunohistochemistry, IHC)…………………13 2.3.7去氧核醣核酸萃取(DNA)及測定基因型…………………………….13 2.3.8細胞培養液……………………………………………………………14 第三章 實驗方法…………………………………………………………………….15 3.1核醣核酸萃取(RNA)…………………………………………………………15 3.2反轉綠聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction)15 3.3即時定量聚合酶連鎖反應(Real-time Quantitative PCR, q-PCR)…………...16 3.4西方墨點法(Western blot assay)……………………………………………...17 3.5石蠟包埋切片………………………………………………………………...18 3.6蘇木精-伊紅染色(hematoxylin and eosin stain,H&E stain)……………….18 3.7去氧核醣核酸萃取(DNA)及測定基因型……………………………………19 3.8免疫組織化學染色法(immunohistochemistry, IHC)………………………...20 3.9細胞轉染實驗………………………………………………………………...22 3.10 壞死區域面積計算………………………………………………………….23 第四章 實驗結果…………………………………………………………………….24 4.1確認miR-192/194突變小鼠之肝臟發育與功能……………………………24 4.2 miR-192/194突變小鼠降低經膽管結紮手術後造成的不可逆急性肝損傷………………………………………………………………………………….25 4.3 miR-192/194突變小鼠可降低過量注射乙醯胺酚(APAP)誘導的可恢復性急性肝損傷………………………………………………………………………….26 4.4觀察經腹腔注射乙醯胺酚(APAP)300mg/kg不同時間點蛋白質表現之趨勢………………………………………………………………………………….27 4.5觀察經腹腔注射乙醯胺酚(APAP)300mg/kg不同時間點訊息RNA之趨勢………………………………………………………………………………….28 4.6過度表達HepG2細胞中miR-194的表現量……………………………….29 第五章 討論………………………………………………………………………….31 5.1 miR-192/194突變小鼠的抗細胞凋亡能力…………………………………31 5.2 miR-192/194與YAP之間的關係…………………………………………...31 5.3 miR-192/194缺失與NR1H4之間的關係…………………………………..32 5.4 miR-192/194未來治療策略…………………………………………………33 第六章 結論………………………………………………………………………….34 第七章 附圖………………………………………………………………………….35 參考文獻……………………………………………………………………………….57 | - |
dc.language.iso | zh_TW | - |
dc.title | MiR-192/194在急性肝損傷中的生物學功能 | zh_TW |
dc.title | The Biological Function of MiR-192/194 in Acute Liver Injury | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 龔秀妮;陳佑宗 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | miR-192/194,急性肝損傷,乙醯胺酚,NR1H4,NF-κB,細胞再生, | zh_TW |
dc.subject.keyword | miR-192/194,acute liver injury(ALI),N-acetyl-para-aminophenol (APAP),NR1H4,NF-κB,cell regeneration, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU201903902 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-19 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | - |
Appears in Collections: | 解剖學暨細胞生物學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-2.pdf Restricted Access | 4.73 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.