請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77182
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林敬哲 | |
dc.contributor.author | Shih-En Chou | en |
dc.contributor.author | 周詩恩 | zh_TW |
dc.date.accessioned | 2021-07-10T21:49:43Z | - |
dc.date.available | 2021-07-10T21:49:43Z | - |
dc.date.copyright | 2019-08-29 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-19 | |
dc.identifier.citation | 1. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621.
2. Hayflick, L., The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 1965. 37: p. 614-36. 3. Robbins, E., E.M. Levine, and H. Eagle, Morphologic changes accompanying senescence of cultured human diploid cells. J Exp Med, 1970. 131(6): p. 1211-22. 4. Kurz, D.J., et al., Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci, 2000. 113 ( Pt 20): p. 3613-22. 5. Dimri, G.P., et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 1995. 92(20): p. 9363-7. 6. Narita, M., et al., A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell, 2006. 126(3): p. 503-14. 7. Narita, M., et al., Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 2003. 113(6): p. 703-16. 8. Zhang, R., W. Chen, and P.D. Adams, Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol, 2007. 27(6): p. 2343-58. 9. Zhang, R., et al., Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell, 2005. 8(1): p. 19-30. 10. Zhang, R., et al., HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Mol Cell Biol, 2007. 27(3): p. 949-62. 11. Parrinello, S., et al., Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci, 2005. 118(Pt 3): p. 485-96. 12. Coppe, J.P., et al., Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem, 2006. 281(40): p. 29568-74. 13. Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008. 6(12): p. 2853-68. 14. Coppe, J.P., et al., The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol, 2010. 5: p. 99-118. 15. Malaquin, N., A. Martinez, and F. Rodier, Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol, 2016. 82: p. 39-49. 16. Watson, J.D., Origin of concatemeric T7 DNA. Nat New Biol, 1972. 239(94): p. 197-201. 17. Olovnikov, A.M., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol, 1973. 41(1): p. 181-90. 18. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature, 1990. 345(6274): p. 458-60. 19. Vaziri, H. and S. Benchimol, From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol, 1996. 31(1-2): p. 295-301. 20. Feng, J., et al., The RNA component of human telomerase. Science, 1995. 269(5228): p. 1236-41. 21. Allshire, R.C., et al., Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature, 1988. 332(6165): p. 656-9. 22. Moyzis, R.K., et al., A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A, 1988. 85(18): p. 6622-6. 23. Brown, G.K., et al., Sulfite oxidase deficiency: clinical, neuroradiologic, and biochemical features in two new patients. Neurology, 1989. 39(2 Pt 1): p. 252-7. 24. Cross, S.H., et al., Cloning of human telomeres by complementation in yeast. Nature, 1989. 338(6218): p. 771-4. 25. de Lange, T., et al., Structure and variability of human chromosome ends. Mol Cell Biol, 1990. 10(2): p. 518-27. 26. Okuda, K., et al., Telomere length in the newborn. Pediatr Res, 2002. 52(3): p. 377-81. 27. Arai, Y., et al., Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine, 2015. 2(10): p. 1549-58. 28. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13. 29. Greider, C.W. and E.H. Blackburn, The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell, 1987. 51(6): p. 887-98. 30. Rothkamm, K. and M. Lobrich, Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A, 2003. 100(9): p. 5057-62. 31. Borrego-Soto, G., R. Ortiz-Lopez, and A. Rojas-Martinez, Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol, 2015. 38(4): p. 420-32. 32. Shay, J.W. and I.B. Roninson, Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene, 2004. 23(16): p. 2919-33. 33. Woods, D. and J.J. Turchi, Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther, 2013. 14(5): p. 379-89. 34. Nie, B., et al., Age-dependent accumulation of 8-oxoguanine in the DNA and RNA in various rat tissues. Oxid Med Cell Longev, 2013. 2013: p. 303181. 35. Barbacid, M., ras genes. Annu Rev Biochem, 1987. 56: p. 779-827. 36. Cahill, M.A., R. Janknecht, and A. Nordheim, Signalling pathways: jack of all cascades. Curr Biol, 1996. 6(1): p. 16-9. 37. Serrano, M., et al., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997. 88(5): p. 593-602. 38. Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-34. 39. Samengo, I., et al., Large conductance calcium-activated potassium channels: their expression and modulation of glutamate release from nerve terminals isolated from rat trigeminal caudal nucleus and cerebral cortex. Neurochem Res, 2014. 39(5): p. 901-10. 40. Bleeker, F.E., et al., Mutational profiling of kinases in glioblastoma. BMC Cancer, 2014. 14: p. 718. 41. Boucher, J., A. Kleinridders, and C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 2014. 6(1). 42. Pyne, S., D.R. Adams, and N.J. Pyne, Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res, 2016. 62: p. 93-106. 43. Ahmad, M., et al., The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins Other Lipid Mediat, 2006. 79(3-4): p. 278-86. 44. Liang, J., et al., Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell, 2013. 23(1): p. 107-20. 45. Baker, D.A., et al., Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J Immunol, 2010. 185(4): p. 2570-9. 46. Grin'kina, N.M., et al., Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One, 2012. 7(5): p. e36475. 47. Holzer, H. and W. Duntze, Metabolic regulation by chemical modification of enzymes. Annu Rev Biochem, 1971. 40: p. 345-74. 48. de Vooght, K.M., et al., First mutation in the red blood cell-specific promoter of hexokinase combined with a novel missense mutation causes hexokinase deficiency and mild chronic hemolysis. Haematologica, 2009. 94(9): p. 1203-10. 49. van Wijk, R., et al., HK Utrecht: missense mutation in the active site of human hexokinase associated with hexokinase deficiency and severe nonspherocytic hemolytic anemia. Blood, 2003. 101(1): p. 345-7. 50. Newman, P., A. Muir, and A.C. Parker, Non-spherocytic haemolytic anaemia in mother and son associated with hexokinase deficiency. Br J Haematol, 1980. 46(4): p. 537-47. 51. Beutler, E., P.G. Dyment, and F. Matsumoto, Hereditary nonspherocytic hemolytic anemia and hexokinase deficiency. Blood, 1978. 51(5): p. 935-40. 52. Rijksen, G., et al., Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia. Blood, 1983. 61(1): p. 12-8. 53. Onyenwoke, R.U., et al., AMPK directly inhibits NDPK through a phosphoserine switch to maintain cellular homeostasis. Mol Biol Cell, 2012. 23(2): p. 381-9. 54. Hsu, T., et al., Progress on Nme (NDP kinase/Nm23/Awd) gene family-related functions derived from animal model systems: studies on development, cardiovascular disease, and cancer metastasis exemplified. Naunyn Schmiedebergs Arch Pharmacol, 2015. 388(2): p. 109-17. 55. Liu, Y.F., et al., NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis. PLoS One, 2015. 10(2): p. e0115968. 56. Yanagida, M., Functional proteomics; current achievements. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 771(1-2): p. 89-106. 57. Rogers, S., et al., Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics, 2008. 24(24): p. 2894-900. 58. Dhingra, V., et al., New frontiers in proteomics research: a perspective. Int J Pharm, 2005. 299(1-2): p. 1-18. 59. Anderson, J.D., et al., Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells, 2016. 34(3): p. 601-13. 60. Dove, A., Proteomics: translating genomics into products? Nat Biotechnol, 1999. 17(3): p. 233-6. 61. Corthals, G.L., et al., The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis, 2000. 21(6): p. 1104-15. 62. Gygi, S.P., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999. 17(10): p. 994-9. 63. Wolters, D.A., M.P. Washburn, and J.R. Yates, 3rd, An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem, 2001. 73(23): p. 5683-90. 64. Adam, G.C., E.J. Sorensen, and B.F. Cravatt, Chemical strategies for functional proteomics. Mol Cell Proteomics, 2002. 1(10): p. 781-90. 65. Zhang, H., W. Yan, and R. Aebersold, Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. Curr Opin Chem Biol, 2004. 8(1): p. 66-75. 66. Jessani, N. and B.F. Cravatt, The development and application of methods for activity-based protein profiling. Curr Opin Chem Biol, 2004. 8(1): p. 54-9. 67. Kidd, D., Y. Liu, and B.F. Cravatt, Profiling serine hydrolase activities in complex proteomes. Biochemistry, 2001. 40(13): p. 4005-15. 68. Jessani, N., et al., Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci U S A, 2004. 101(38): p. 13756-61. 69. Evans, M.J. and B.F. Cravatt, Mechanism-based profiling of enzyme families. Chem Rev, 2006. 106(8): p. 3279-301. 70. Jeffery, D.A. and M. Bogyo, Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol, 2003. 14(1): p. 87-95. 71. Kalesh, K.A., et al., Peptide-based activity-based probes (ABPs) for target-specific profiling of protein tyrosine phosphatases (PTPs). Chem Commun (Camb), 2010. 46(4): p. 589-91. 72. Greenbaum, D.C., et al., Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem Biol, 2002. 9(10): p. 1085-94. 73. Mason, R.W., L.T. Bartholomew, and B.S. Hardwick, The use of benzyloxycarbonyl[125I]iodotyrosylalanyldiazomethane as a probe for active cysteine proteinases in human tissues. Biochem J, 1989. 263(3): p. 945-9. 74. Berkers, C.R., et al., Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods, 2005. 2(5): p. 357-62. 75. Patricelli, M.P., et al., Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics, 2001. 1(9): p. 1067-71. 76. Speers, A.E., G.C. Adam, and B.F. Cravatt, Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc, 2003. 125(16): p. 4686-7. 77. Cravatt, B.F., A.T. Wright, and J.W. Kozarich, Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem, 2008. 77: p. 383-414. 78. Lo, L.C., et al., Design and synthesis of class-selective activity probes for protein tyrosine phosphatases. J Proteome Res, 2002. 1(1): p. 35-40. 79. Greenbaum, D., et al., Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol, 2000. 7(8): p. 569-81. 80. Liu, Y., M.P. Patricelli, and B.F. Cravatt, Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14694-9. 81. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 82. The Gene Ontology, C., The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res, 2019. 47(D1): p. D330-D338. 83. Bjursell, M.K., et al., Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet, 2011. 89(4): p. 507-15. 84. El-Kharrag, R., R. Owen, and D. Boison, Adenosine Kinase Deficiency Increases Susceptibility to a Carcinogen. J Caffeine Adenosine Res, 2019. 9(1): p. 4-11. 85. Dunwiddie, T.V. and H.L. Haas, Adenosine increases synaptic facilitation in the in vitro rat hippocampus: evidence for a presynaptic site of action. J Physiol, 1985. 369: p. 365-77. 86. Schwarzschild, M.A., et al., Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci, 2006. 29(11): p. 647-54. 87. Dall'Igna, O.P., et al., Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol, 2007. 203(1): p. 241-5. 88. Matsuura, S., et al., Human adenylate kinase deficiency associated with hemolytic anemia. A single base substitution affecting solubility and catalytic activity of the cytosolic adenylate kinase. J Biol Chem, 1989. 264(17): p. 10148-55. 89. Lu, Q. and M. Inouye, Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism. Proc Natl Acad Sci U S A, 1996. 93(12): p. 5720-5. 90. Pannicke, U., et al., Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet, 2009. 41(1): p. 101-5. 91. Liu, R., et al., Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase. Int J Biochem Cell Biol, 2009. 41(6): p. 1371-80. 92. Kong, F., et al., Differential expression of adenylate kinase 4 in the context of disparate stress response strategies of HEK293 and HepG2 cells. Arch Biochem Biophys, 2013. 533(1-2): p. 11-7. 93. Lai, Y., et al., Down-regulation of adenylate kinase 5 in temporal lobe epilepsy patients and rat model. J Neurol Sci, 2016. 366: p. 20-26. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77182 | - |
dc.description.abstract | 正常的人體細胞因為端粒縮短所以不能無限分裂,這種現象稱為細胞老化。端粒縮短會誘導 DNA 損傷反應以阻止細胞週期停滯。DNA 損傷途徑主要由一系列蛋白質的磷酸化和去磷酸化介導。激酶是可以進行多種基質磷酸化的酵素,包括蛋白質和小分子代謝物。為了找出參與在細胞老化中的激酶,我們的實驗室應用基於活性的蛋白質分析 (ABPP)策略來篩選其活性在年輕和老化細胞中發生改變的激酶。在該分析中使用選擇性標記活性激酶的化學探針LCL16001。在本篇研究中,我們首先分析了質譜數據,並選擇了三種激酶,ADK (adenosine kinase)、AK4 (adenylate kinase 4)和 AK5 (adenylate kinase 5)進行進一步分析。這三種激酶參與腺嘌呤生物合成反應,發現它們的活性在老化細胞中升高。使用基於 LCL16001 的 ABPP 方法,我證實了 ADK、AK4 和 AK5 的激酶活性在老化細胞中升高。有趣的是,只有AK4 在老化細胞中顯示出蛋白表現有增加,老化細胞中 ADK 和 AK5 蛋白表現則無。我同時也發現 AK4 的升高不是由於老化細胞中轉錄因子 p53 的激活。為了測試這三種激酶在老化中的作用,我通過腺病毒感染過度表達這些基因,發現它們都沒有誘導細胞的老化。由於激酶活性在細胞中受到嚴格調節,因此實驗可能需要這些基因constitutively-active 突變。有趣的是,通過short hairpin RNAs 降低這三個基因中任一個的表達都會導致正常人成纖維細胞的老化。因此,雖然尚不清楚ADK、 AK4 和 AK5 如何參與衰老,但它們對於防止細胞老化是必要的。 | zh_TW |
dc.description.abstract | Due to telomere shortening, normal human somatic cells cannot divide infinitely. This phenomenon is called cellular senescence. Telomere shortening induces DNA damage response to arrest cell cycle arrest. DNA damage pathway is mainly mediated by a series of phosphorylation and de-phosphorylation of proteins. Kinases are enzymes that carry out phosphorylation of a variety of substrates including proteins and small molecule metabolites. In order to identify kinases that are involved in cellular senescence, our lab applied activity-based protein profiling (ABPP) strategy to screen for kinases whose activities are altered in proliferating and senescent cells. A chemical probe, LCL16001, that selectively labels active kinases was used in this analysis. In this study, we first analyzed the mass spectrometry data and selected three kinases, ADK (adenosine kinase), AK4 (adenylate kinase 4) and AK5 (adenylate kinase 5) for further analysis. These three kinases are involved in adenine biosynthesis process and their activities were found to be elevated in senescent cells. Using a LCL16001-based activity assay system, I confirmed the kinase activities of ADK, AK4 and AK5 are elevated in senescent cells. Interestingly, only AK4 showed increased protein level in senescent cells. The ADK and AK5 protein levels were not significantly increased in senescent cells. I also found the elevation of AK4 was not due to the activation of transcription factor p53 in senescent cells. To test the role of these three kinases in senescence, I overexpressed these genes by adenovirus infection and found that none of them induced senescence in normal human fibroblasts. Since the kinase activities are tightly regulated in cells, the constitutively-active mutant of these genes might be required for the experiment. Interestingly, knocking down the expression of either one of these three genes by short hairpin RNAs resulted in senescence of normal human fibroblasts. Thus, although it is not clear how ADK, AK4 and AK5 are involved in senescence, they are required to prevent cells from senescence. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:43Z (GMT). No. of bitstreams: 1 ntu-108-R06442010-1.pdf: 3656237 bytes, checksum: 15d0b0bfa2a233978f373562218dc495 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄 i
表目錄 iii 圖目錄 iv 縮寫檢索表 v 摘要 1 Abstract 2 一、緒論 3 1.1 細胞老化 (Cellular senescence) 3 1.2 激酶 (Kinase) 5 1.3 蛋白質表現量及活性分析 7 1.4 化學活性探針 (Activity-based chemical probe) 8 1.5 研究參與在老化過程的腺嘌呤合成中的激酶 9 二、材料與方法 11 2.1 細胞株培養 (Cell Culture) 11 2.1.1 細胞株來源及培養液 11 2.1.2 細胞株培養 11 2.2 細胞計數 12 2.3 生長曲線 (Population doubling curve) 12 2.4 蛋白質樣品處理及濃度測定 12 2.4.1 樣品處理 12 2.4.2 樣品濃度測定 12 2.5 蛋白質分析蛋白質分析_西方墨點法西方墨點法 (Western blotting analysis) ........................................ 13 2.5.1 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 13 2.5.2 轉漬轉漬 (Transfer) 13 2.5.3 免疫轉漬分析免疫轉漬分析 (Immunoblotting) 13 2.6 化學探針標定反應化學探針標定反應 14 2.6.1 細胞樣品前處理細胞樣品前處理 14 2.6.2 PD-10脫鹽管柱去處未反應脫鹽管柱去處未反應LCL16001探針探針 14 2.6.3 探針標定蛋白質分析探針標定蛋白質分析 14 2.7 RNA萃取與反轉錄聚合酶反應萃取與反轉錄聚合酶反應 (RNA Extraction and Reverse Transcription-PCR) 15 2.7.1 RNA萃取萃取 15 2.7.2 反轉錄反應反轉錄反應 (Reverse transcription, RT) 15 2.7.3 即時定量聚合酶反應即時定量聚合酶反應 (Real-time Polymerase chain reaction) ........................ 15 2.8 Senescence-associated β-galactosidase staining (SA-β-gal staining).......................... 16 2.9 溴化去氧尿苷溴化去氧尿苷 (BrdU)與免疫螢光染色與免疫螢光染色 (Immunofluorescent staining) .......... 17 2.11 活性氧測試活性氧測試 (ROS detection assay) 17 2.12 慢病毒之製備慢病毒之製備 (Lentivirus production)18 2.12.1 質體來源質體來源 18 2.12.2 質體製備質體製備 18 2.12.3 轉染作用轉染作用 (Transfection)與慢病毒生產與慢病毒生產 (Lentivirus production) ................ 18 2.12.4 慢病毒效價測定慢病毒效價測定 (Lentivirus determination) ....................................................... 19 2.13 建構載體建構載體 (Construct)19 2.13.1 聚合酶鏈鎖反應聚合酶鏈鎖反應 (polymerase chain reaction,,PCR) 19 2.13.2 接合反應接合反應 (Ligation) 20 2.13.3 轉殖反應轉殖反應 (Transformation) 20 2.14 腺病毒之置備腺病毒之置備 (Adenovirus production) 20 2.14.1 重重組腺病毒質體組腺病毒質體 (Recombination adenovirus plasmid) ............................................ 20 2.14.2 轉染作用轉染作用 (Transfection)與腺病毒生產與腺病毒生產 (Adenovirus production) ............ 21 2.14.3 腺病毒效價測定腺病毒效價測定 (Adenovirus determination)............................ 21 三、 實驗結果 22 3.1 分析細胞分析細胞IMR90的老化現象的老化現象 22 3.2 使用質譜儀分析使用質譜儀分析LCL16001探針標定之激酶探針標定之激酶 22 3.3 利用質譜儀找到並參與在核苷酸生成過程的激酶利用質譜儀找到並參與在核苷酸生成過程的激酶 24 3.4 利用探針標定驗證質譜儀分析結果利用探針標定驗證質譜儀分析結果 25 3.5 分別過度表現分別過度表現ADK、、AK4、、AK5基因不會使基因不會使IMR90細胞老化細胞老化 ........................ 25 3.6 降低降低ADK基因的表現導致基因的表現導致IMR90細胞走向老化細胞走向老化 26 3.7 降低降低AK4基因的表現導致基因的表現導致IMR90細胞走向老化細胞走向老化 27 3.8 降低降低AK5基因的表現導致基因的表現導致IMR90細胞走向老化細胞走向老化 28 3.9 分別降低分別降低ADK、、AK4及及AK5基因表現基因表現不會使細胞中的氧化壓力上升不會使細胞中的氧化壓力上升 28 3.10 AK4 mRNA及蛋白表現不受降低及蛋白表現不受降低p53基因的表現影響基因的表現影響 29 四、 討論 30 參考文獻35 表目錄 Table 1. shRNAs from National RNAi Core Facility45 Table 2. Biological process of identified kinase by Gene ontology analysis .......................... 46 圖目錄 Figure 1 Senescence phenotype of IMR90 cell line. 47 Figure. 2 Identification probe-labeled kinases in proliferating and senescent IMR90 cells.50 Figure 3 Nucleotide biosynthesis pathway with kinases involved. 51 Figure 4 Schematic presentation activity-based proteomic analysis using chemical probe LCL16001. 52 Figure. 5 Analysis nucleotide biosynthesis kinases in proliferating and senescent IMR90 cells.54 Figure. 6 Overexpression GFP does not make IMR90 cells senescence. .................................... 56 Figure. 7 Overexpression ADK in IMR90 cells can not lead to cellular senescence. 58 Figure. 8 Overexpression AK4 in IMR90 cells can not lead to cellular senescence. .. 60 Figure. 9 Overexpression AK5 in IMR90 cells can not lead to cellular senescence. .. 62 Figure. 10 ADK knockdown induces cellular senescence in IMR90 cells. .............................. 66 Figure. 11 AK4 knockdown induces cellular senescence in IMR90 cells. ................................ 70 Figure. 12 AK5 knockdown induces cellular senescence in IMR90 cells. ................................ 74 Figure. 13 Knockdown ADK, AK4 or AK5 do not increase oxidative stress in IMR90 cells based on ROS. 75 Figure. 14 AK4 expression is not affected by p53 knockdown 76 Appendix 1 Plasmid and competent cell of AdEAsy system. 77 Appendix 2 Structure and labeling mechanism of chemical probe LCL16001. ................ 78 Appendix 3 Mass spectrometry analysis of probe-labeled kinase in young and senescence IMR90 cells. ....... 79 | |
dc.language.iso | zh-TW | |
dc.title | 分析腺嘌呤生合成激酶在細胞老化中的角色 | zh_TW |
dc.title | Analyzing the roles of adenine biosynthesis kinases in cellular senescence | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧述諄,吳青錫 | |
dc.subject.keyword | 激?,老化,腺嘌呤, | zh_TW |
dc.subject.keyword | kinases,senescence,adenine, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201903930 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06442010-1.pdf 目前未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。