Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明zh_TW
dc.contributor.author沈怡廷zh_TW
dc.contributor.authorI-Ting Shenen
dc.date.accessioned2021-07-10T21:49:41Z-
dc.date.available2024-08-20-
dc.date.copyright2019-08-28-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1]Sartelli, M., et al. "2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections." World Journal of Emergency Surgery 13 (2018):1-24
[2]鍾志桓,「不可輕忽的皮膚及軟組織感染~蜂窩性組織炎」,郭綜合醫院(2010)
[3]Miller, L.G., et al. "Incidence of skin and soft tissue infections in ambulatory and inpatient settings, 2005–2010." BMC infectious diseases 15.1 (2015): 362.
[4]Stevens, D.L., et al. "Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America." Clinical infectious diseases 59.2 (2014): e10-e52.
[5]Moran, G.J., et al. "Methicillin-resistant S. aureus infections among patients in the emergency department." New England Journal of Medicine 355.7 (2006): 666-674.
[6]Edelsberg, J., et al. "Trends in US hospital admissions for skin and soft tissue infections." Emerging infectious diseases 15.9 (2009): 1516.
[7]Scully, T., "Diabetes in numbers." Nature 485.7398 (2012): S2.
[8]Lipsky, B.A., et al. "2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections." Clinical infectious diseases 54.12 (2012): e132-e173.
[9]Richard, J.L., et al. "Management of patients hospitalized for diabetic foot infection: results of the French OPIDIA study." Diabetes & metabolism 37.3 (2011): 208-215.
[10]Duan, S.B., et al. "Urinary KIM-1, IL-18 and Cys-C as early predictive biomarkers in gadolinium-based contrast-induced nephropathy in the elderly patients." Clinical nephrology 80.5 (2013): 349-354.
[11]Chira, S., and Miller, L.G., "Staphylococcus aureus is the most common identified cause of cellulitis: a systematic review." Epidemiology & Infection 138.3 (2010): 313-317.
[12]Elfadil, A.A., et al. "Description of cellulitis lesions and associations between cellulitis and other categories of condemnation." Avian diseases (1996): 690-698.
[13]Mertz, K.R., et al. "Breast cellulitis following breast conservation therapy: a novel complication of medical progress." Clinical infectious diseases 26.2 (1998): 481-486.
[14]Ellis Simonsen, S.M., et al. "Cellulitis incidence in a defined population." Epidemiology & Infection 134.2 (2006): 293-299.
[15]Fierheller, M., et al. "A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers." Advances in skin & wound care 23.8 (2010): 369-379.
[16]Freitas, R.A., Nanomedicine Volume I-Basic Capabilities Landes Bioscience, Georgetown, TX, 1999.
[17]Horzic, M., Bunoza D. and Maric, K., "Contact Thermography in a study of primary healing of surgical wounds." Ostomy/wound management 42.1 (1996): 36-8.
[18]Chanmugam, A., et al. "Relative Temperature Maximum in Wound Infection and Inflammation as Compared with a Control Subject Using Long-Wave Infrared Thermography." Advances in skin & wound care 30.9 (2017): 406-414.
[19]Wang, S.C., Anderson JAE, et al, "Point-of-care wound visioning technology: Reproducibility and accuracy of a wound measurement app. "PLoS ONE 12(8): e0183139.
[20]Bharara, M., et al, "Wound inflammatory index: a “proof of concept” study to assess wound healing trajectory." (2010): 773-779.
[21]Spahn, J.G., et al. "Method for quantifying wound infection using long-wave infrared thermography." U.S. Patent No. 20170296066A1. 14 Apr. 2017.
[22]Chang, M.C., et al, "Multimodal Sensor System for Pressure Ulcer Wound Assessment and Care." IEEE Transactions on Industrial Informatics14.3(2018):1186-1196.
[23]Wu, S.Q., et al. "Weighted Linear Normalization Method of Infrared Image." Journal of Wuhan University of Technology(2010).
[24]陳暐宗,「數位紅外線熱影像於複雜性軟組織感染的治療反應評估」,國立台灣大學,碩士論文,民國一百零三年
[25]Bookstein, F.L. "Principal warps: Thin-plate splines and the decomposition of deformations." IEEE Transactions on pattern analysis and machine intelligence 11.6 (1989): 567-585.
[26]Barcelos, E.Z., et al, "A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images." Sensors (Basel) 14.11(2014):21950–21967.
[27]Chen, C.L., et al, "Infrared thermal facial image sequence registration analysis and verification." Infrared Physics & Technology 69(2015):1-6
[28]Besl, P.J., et al, "A method for registration of 3-D shapes." IEEE Transactions on pattern analysis and machine intelligence 14.2 (1992): 239-256.
[29]Myronenko, A., and Song X., "Point set registration: Coherent point drift." IEEE transactions on pattern analysis and machine intelligence 32.12 (2010): 2262-2275.
[30]Zakariaee, R., et al, "Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom." Physics in medicine and biology 61.2 (2016): 825.
[31]Akhloufi, M.A. and Verney, B., "Multimodal registration and fusion for 3d thermal imaging." Mathematical Problems in Engineering 2015 (2015).
[32]Ring , E.F.J. , " The discovery of infrared radiation in 1800." Imaging Science Journal 48.1 (2000):1-8
[33]Hardy, J.D. and Muschenheim, C., "Radiation of heat from the human body. V. The transmission of infrared radiation through skin." J Clin Invest 15.1 (1936):1-9
[34]Francis, R., "Thermal imaging today and its relevance to diabetes." J Diabetes Sci Technol 4.4(2010):857-62.
[35]Shirzadfar, H., Ghasemi, F. and Shahbazi, M., "A review of recent application of medical thermography in human body for medical diagnosis." SCIOL Biomedicine (2018):2631-4053
[36]Pereira , C.B., et al, "Infrared Thermography." Multi-Modality Imaging (2018):1-30
[37]Hildebrandt, C., Raschner, C., and Ammer, K., " An Overview of Recent Application of Medical Infrared Thermography in Sports Medicine in Austria." Sensors (Basel) 10.5(2010): 4700–4715.
[38]Lahiri, B.B., et al, "Medical applications of infrared thermography: A review." Infrared Physics & Technology 55. 4(2012):221-235
[39]Ring, E.F., et al, "Quantitation of thermography in arthritis using multi-isothermal analysis. II. Effect of nonsteroidal anti-inflammatory therapy on the thermographic index. " Ann Rheum Dis 33.4(1974):353-6.
[40]Morello, R., et al, "Infrared Passive Thermography to Identify and Assess Inflammatory Diseases." 2018 IEEE International Symposium on Medical Measurements and Applications (2018)
[41]Wang, S.C., et al, "Point-of-care wound visioning technology: Reproducibility and accuracy of a wound measurement app." PLoS ONE 12.8: e0183139.
[42]Kakuta, N., et al, "Human Thermal Models for Evaluating Infrared Images." IEEE Medicine & Biology Society 21.6(2002):65-72.
[43]Vargas, J.V.C., et al, "Normalized methodology for medical infrared imaging." Infrared Physics & Technology 52.1(2009):42-47.
[44]Agostin, V., et al, "Noise Estimation in Infrared Image Sequences: A Tool for the Quantitative Evaluation of the Effectiveness of Registration Algorithms." IEEE Transactions on Biomedical Engineering55.7(2008):1917-1920
[45]Chen, C.M., et al, "Longitudinal image registration algorithm for infrared images for chemotherapy response monitoring and early detection of breast cancers." U.S. Patent No. 8805038B2(2011)
[46]Chernov, G., et al., "3D Dynamic Thermography System for Biomedical Applications." Series in BioEngineering(2017):517-545
[47]Barone, S., et al, "A biomedical application combining visible and thermal 3D imaging." University of Pisa(2006)
[48]Chromy, A., "Application of High-Resolution 3D Scanning in Medical Volumetry." Intl Journal of electronics and telecommunications 62.1(2016):23-31
[49]Aksenov,P., et al, "3D thermography for quantification of heat generation resulting from inflammation" Proc. 8th 3D Modelling symposium(2003)
[50]Sella, T., et al, "A novel functional infrared imaging system coupled with multiparametric computerised analysis for risk assessment of breast cancer." European Radiology 23.5(2013):1191-8.
[51]Grubišić, I., et al, "Active 3D scanning based 3D thermography system and medical applications." 2011 Proceedings of the 34th International Convention MIPRO (2011)
[52]Souza, M.A., et al, "Combining 3D models with 2D infrared images for medical applications." 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015): 2395-2398.
[53]Krefer, A.G., et al, "A method for generating 3D thermal models with decoupled acquisition." Comput Methods Programs Biomed(2017)
[54]Akhloufi, M.A. and Verney B., "Multimodal registration and fusion for 3d thermal imaging." Mathematical Problems in Engineering 2015 (2015).
[55]Besl, P.J., and Neil, D.M., "A method for registration of 3-D shapes." IEEE Transactions on pattern analysis and machine intelligence 14.2 (1992): 239-256.
[56]Zhang, Z., "Iterative point matching for registration of free-form curves and surfaces." International journal of computer vision 13.2 (1994): 119-152.
[57]Kullback, S. and Richard, A.L., "On information and sufficiency." The annals of mathematical statistics 22.1 (1951): 79-86.
[58]Chen, E.C.S., et al., "Registration of 3D shapes under anisotropic scaling." International journal of computer assisted radiology and surgery 10.6 (2015): 867-878.
[59]Allen, B., Curless B., and Popović Z., "The space of human body shapes: reconstruction and parameterization from range scans." ACM transactions on graphics (TOG) 22. 3.(2003)
[60]Zakariaee, R., et al. "Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom." Physics in medicine and biology 61.2 (2016): 825.
[61]盤松青健康電子報,臺大醫院(2018)
[62]謝松梅,楊進波和孫濤,「皮膚及皮膚軟組織感染抗菌藥物臨床試驗設計的特殊考慮」,新醫藥(2019-2013)
[63]Leong, H.N., et al, "Management of complicated skin and soft tissue infections with a special focus on the role of newer antibiotics." Infection and Drug Resistance 11(2018):1959-1974
[64]Electromagnetic radiation, wikipedia(2019)
[65]Hendler, E. and Hardy, J.D., "Infrared and Microwave Effects on Skin Heating and Temperature Sensation." Medical Electronics, IRE Transactions on 7.3(1960):143-152.
[66]Barnes, H., "Mid-wave and long-wave infrared polarimetric phenomenology sensors. " 1999 IEEE Aerospace Conference. Proceedings(1999)
[67]Itsuno, A.M., Phillips, J.D. and Velicu, S., "Unipolar barrier-integrated HgCdTe infrared detectors." 70th Device Research Conference(2012)
[68]Zhao, G., "An infrared detection range model for near space craft application." 2013 IEEE International Conference of IEEE Region 10(2013)
[69]Barnes, R.B, "Thermography of the human body." Science 140.3569(1963):870-877
[70]Gao, C., W. Jing, and C. Li., "Optimal Guidance Law Design for Reentry Vehicle Using Virtual Displacement Concept." 2007 Chinese Control Conference(2007).
[71]Geng, J., "Structured-light 3D surface imaging: a tutorial." Advances in Optics and Photonics 3.2(2011) :128
[72] Zhang, Z.,"A flexible new technique for camera calibration." IEEE Transactions on Pattern Analysis and Machine Intelligence 22.11 (2000):1330-1334
[73]Fritzke, B., "A growing neural gas network learns topologies." NIPS'94 Proceedings of the 7th International Conference on Neural Information Processing Systems(1994):625-632
[74]McLachlan, G., and Krishnan, T., "The EM algorithm and extensions." John Wiley & Sons 382(2007).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77181-
dc.description.abstract皮膚軟組織感染是一常見的感染性疾病。根據美國感染症醫學會制定之治療指引,臨床診斷主要依賴患處之身體檢查:在觸診時以雙手觸摸患部與其鏡像解剖構造之對側位置,比較其溫度之差異程度,加上白血球計數、C-反應蛋白等檢驗,及核磁共振MRI影像作為參考依據。然而,臨床上之身體檢查中,熱或紅等理學檢查結果之判讀標準大多難以量化;臨床指標如發炎指數、白血球數雖可量化,但治療後此些指數皆可能快速下降,難以作為終止治療單一的指標;而影像學方面MRI雖為建議之參考標準,但其價格昂貴且具有腎毒性之風險,不適合用以密集追蹤治療療效。因此本研究提出以紅外線熱影像追縱複雜性軟組織感染的評估療效,藉由觀察紅外線熱影像及相同感興趣區域於治療過程中之熱變化以評估療效。
紅外線為一非侵入性、可攜式且可將熱量化之工具。以紅外線熱影像追蹤之關鍵,在於如何比較多次追蹤中不同時間點所拍攝之紅外線熱影像,因此需克服角度、姿勢等造成的形變問題。本研究提出利用三維掃描表面作為媒介,間接地將多時間點二維多時間點的紅外線熱影像對位,其中透過2D/3D紅外光影像與掃描表面對位演算法,取得具有溫度分布的三維掃描表面,再以CPD 3D掃描表面間之對位演算法,間接地完成不同時間點紅外線熱影像間的對位,並提出不同時間點紅外線熱影像之正規化方法,使紅外線熱影像在相似基礎下進行觀察與分析。
透過本研究之結果顯示,有效完成之多時間點紅外線熱影像之對位,可克服因拍攝紅外線之角度以及距離,紅外線熱影像之正規化方面,能夠使分析病患的紅外線影像中的基礎溫度相似,因此本研究不但能夠藉由多時間點紅外線熱影像對位結果清楚地呈現溫度增高之區域,也能夠有效地分析相同區域之溫度變化。
zh_TW
dc.description.abstractSkin and soft tissue infection (SSTI) is a major infectious disease. According to the latest Infectious Disease Society of America (IDSA) guideline for SSTI, the diagnosis is mainly based on physical examination of infected site with the local heat, redness, swelling, and pain. The laboratory tests can include white blood cell count (WBC) and C-reactive protein (CRP). The Magnetic Resonance Imaging (MRI) will be considered if deep site infection is suspected as a diagnostic or follow-up tool. However, the longitudinal follow up of treatment outcome for SSTI is usually difficult. The local infection signs are subjective and hard to be quantified. Even though WBC and CRP can be quantified, they are usually returned to normal range after initial antibiotics treatment and can’t be relied as a single marker to determine treatment duration. For MRI, the evaluation tool suggested by guideline, it may not be available for every hospitals, costly, and still carries the risk for nephrotoxicity. Thus, it may not be suitable as a continuous monitoring tool. Thus, we proposed an infrared thermometer system, non-invasive, portable and heat-generating tool, to follow up of the treatment response for SSTI.
The key is how to analyze the local temperature in the same region of interest (ROI) among infrared thermal images taken at different time, which should overcome the deformation problems caused by different angle and posture because there is no available landmarks for longitudinal registration. To overcome the above possible technique gaps, we proposed 3D scanning surface as the transformation media to register the longitudinal infrared image. The main concept was to obtain the 3D scanning surface with temperature at first and then registered them each other. In order to gain more accurate registration results, the visible image with higher resolution was initially registered with the 3D scanning surface by camera calibration at first, and then calculated the correspondence between the visible image and infrared thermal image by the homography matrix coordinate transformation algorithm. Finally, the registration of 3D scanning surfaces used a point set approach, Coherent Point Drift (CPD), extracted by Growing Neural Gas algorithm. To avoid being affected by the non-fixed markers in cross-sectional images, the feature point sets on it would be removed.
We also proposed the normalization method for infrared thermal images based on the registered result that could make the basic temperature similar in cross-sectional infrared images. Therefore, this study could not only clearly show the temperature change through the infrared thermal image registration result, but also effectively analyze temperature changes in infrared images.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:49:41Z (GMT). No. of bitstreams: 1
ntu-108-R06548004-1.pdf: 6645855 bytes, checksum: 1958abf59430e076dd4d92296ecb634d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2研究動機 2
1.3 文獻回顧 6
1.3.1 紅外線的應用 6
1.3.1.1 複雜性軟組織感染之紅外線熱影像量化分析 7
1.3.2 紅外線熱影像溫度正規化 9
1.3.3 影像對位 9
1.3.3.1 2D紅外線熱影像對位 9
1.3.3.2 多時間點紅外線熱影像遷移式間接對位演算法 10
1.3.3.2.1 2D IR紅外線熱影像與3D表面掃描影像對位 10
1.3.3.2.2 三維表面影像對位 12
1.4 研究目的 13
1.5 研究架構 15
第二章 基礎理論 16
2.1 複雜性軟組織感染的成因與分類與現行感染檢查 16
2.1.1 複雜性軟組織感染之生成 16
2.1.2 複雜性軟組織感染的病理分類 17
2.1.3 現行的複雜性軟組織感染檢查 17
2.2 紅外線基礎理論 18
2.2.1 紅外線光譜與熱造影概論 18
2.2.2 熱輻射理論 19
第三章 研究材料及方法 21
3.1 研究材料 21
3.1.1 研究對象 21
3.1.1.1收案對象 21
3.1.1.2排除對象 21
3.1.2臨床試驗收案流程 21
3.1.2.1熱影像攝影檢查(手持式遠紅外線熱像儀拍照流程) 21
3.1.2.2 3D立體攝影檢查(三維立體掃描儀拍攝流程) 22
3.1.2.3治療與後續追蹤 22
3.2 系統硬體設計與架構 23
3.2.1手持式紅外線熱像儀(InfRec Thermo GEAR G100EXD) 23
3.2.2三維影像掃描器(Artec Eva Lite) 24
3.3 軟體架構分析方法 24
3.3.1多時間點紅外線熱影像遷移式間接對位演算法之開發 25
3.3.1.1 2D/3D紅外光影像與掃描表面序列形變影像對位模型之建立 26
3.3.1.1.1 2D/3D可見光影像與表面掃描序列形變影像對位模型之建立 26
3.3.1.1.2 2D可見光影像與紅外光影像座標轉換演算法 29
3.3.1.2多時間點3D掃描表面對位模型之建立 31
3.3.2紅外線熱影像分析演算法之開發 32
3.3.2.1紅外線序列熱影像溫度正規化 32
3.3.2.2紅外線熱影像隨時間點之溫度分析 34
第四章 研究成果與討論 35
4.1 多時間點紅外線影像對位結果與驗證 35
4.1.1 2D/3D紅外線熱影像與掃描表面序列形變影像對位結果 35
4.1.1.1 2D/3D可見光影像與表面掃描序列形變影像對位結果 35
4.1.1.2 2D可見光影像與紅外光影像座標轉換結果 37
4.1.2多時間序列3D掃描表面對位結果 39
4.1.3多時間點紅外線影像對位結果 40
4.2 紅外線熱影像分析結果 45
4.2.1溫度正規化演算法結果評估與討論 45
4.2.2 紅外線熱影像分析之評估與討論 54
第五章 結論與未來展望 58
5.1 結論 58
5.2 未來展望 59
參考文獻 60
附錄 臨床試驗審查通過之證明文件 67
-
dc.language.isozh_TW-
dc.subject複雜性軟組織感染感染性疾病zh_TW
dc.subject紅外線熱影像zh_TW
dc.subject多時間序列對位zh_TW
dc.subject正規化zh_TW
dc.subject三維掃描影像zh_TW
dc.subjectSkin and soft tissue infectionen
dc.subjectlongitudinal registrationen
dc.subjectinfrared thermal imageen
dc.subject3D surfaceen
dc.subjectNormalizationen
dc.title複雜性軟組織感染性疾病紅外線熱影像療效追蹤系統:基於三維表面多時間點對位演算法zh_TW
dc.titleTreatment Response Monitoring System For Complicated Skin And Soft Tissue Infections: Longitudinal Registration Algorithm Based On Three-Dimensional Scanning Surfaceen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盤松青;李佳燕zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword複雜性軟組織感染感染性疾病,紅外線熱影像,多時間序列對位,正規化,三維掃描影像,zh_TW
dc.subject.keywordSkin and soft tissue infection,longitudinal registration,infrared thermal image,3D surface,Normalization,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU201904029-
dc.rights.note未授權-
dc.date.accepted2019-08-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
6.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved