請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77178
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑文(Shu-Wen Lin) | |
dc.contributor.author | Ting-Hsuan Hsu | en |
dc.contributor.author | 許庭瑄 | zh_TW |
dc.date.accessioned | 2021-07-10T21:49:35Z | - |
dc.date.available | 2021-07-10T21:49:35Z | - |
dc.date.copyright | 2019-08-29 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-19 | |
dc.identifier.citation | 1. 鄭芷寧(民106)。Linezolid 藥品血中濃度與不良反應之關聯性研究。未出版之碩士論文,國立臺灣大學臨床藥學研究所,台北市。
2. Ford, C. W., Zurenko, G. E., & Barbachyn, M. R. (2001). The discovery of linezolid, the first oxazolidinone antibacterial agent. Curr Drug Targets Infect Disord, 1(2), 181-199. 3. Norrby, R. (2001). Linezolid--a review of the first oxazolidinone. Expert Opin Pharmacother, 2(2), 293-302. doi: 10.1517/14656566.2.2.293 4. Pea, F., Furlanut, M., Cojutti, P., et al. (2010). Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother, 54(11), 4605-4610. doi: 10.1128/AAC.00177-10 5. Cattaneo, D., Orlando, G., Cozzi, V., et al. (2013). Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents, 41(6), 586-589. doi: 10.1016/j.ijantimicag.2013.02.020 6. Matsumoto, K., Takeshita, A., Ikawa, K., et al. (2010). Higher linezolid exposure and higher frequency of thrombocytopenia in patients with renal dysfunction. Int J Antimicrob Agents, 36(2), 179-181. doi: 10.1016/j.ijantimicag.2010.02.019 7. Hiraki, Y., Tsuji, Y., Hiraike, M., et al. (2012). Correlation between serum linezolid concentration and the development of thrombocytopenia. Scand J Infect Dis, 44(1), 60-64. doi: 10.3109/00365548.2011.608712 8. Nukui, Y., Hatakeyama, S., Okamoto, K., et al. (2013). High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother, 68(9), 2128-2133. doi: 10.1093/jac/dkt133 9. Pea, F., Cojutti, P. G., & Baraldo, M. (2017). A 10-Year Experience of Therapeutic Drug Monitoring (TDM) of Linezolid in a Hospital-wide Population of Patients Receiving Conventional Dosing: Is there Enough Evidence for Suggesting TDM in the Majority of Patients? Basic Clin Pharmacol Toxicol, 121(4), 303-308. doi: 10.1111/bcpt.12797 10. Morata, L., Cuesta, M., Rojas, J. F., et al. (2013). Risk factors for a low linezolid trough plasma concentration in acute infections. Antimicrob Agents Chemother, 57(4), 1913-1917. doi: 10.1128/AAC.01694-12 11. Pfizer Pharmaceuticals Inc, N., USA. (2015). Zyvox (R) IV injection, oral tablets, suspension. [Package insert]. 12. Slatter, J. G., Stalker, D. J., Feenstra, K. L., et al. (2001). Pharmacokinetics, metabolism, and excretion of linezolid following an oral dose of [(14)C]linezolid to healthy human subjects. Drug Metab Dispos, 29(8), 1136-1145. 13. Brier, M. E., Stalker, D. J., & Aronoff, G. R. (1998). Pharmacokinetics of linezolid in subjects with various degrees of renal failure. Paper presented at the The 38th ICAAC, San Diego, USA. 14. Brickner, S. J., Hutchinson, D. K., Barbachyn, M. R., et al. (1996). Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J Med Chem, 39(3), 673-679. doi: 10.1021/jm9509556 15. Livermore, D. M. (2003). Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother, 51 Suppl 2, ii9-16. doi: 10.1093/jac/dkg249 16. Lin, A. H., Murray, R. W., Vidmar, T. J., & Marotti, K. R. (1997). The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother, 41(10), 2127-2131. 17. Douros, A., Grabowski, K., & Stahlmann, R. (2015). Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin Drug Metab Toxicol, 11(12), 1849-1859. doi: 10.1517/17425255.2015.1098617 18. Bowker, K. E., Wootton, M., Holt, H. A., & MacGowan, A. P. (2002). In vitro activity of linezolid against Gram-positive isolates causing infection in continuous ambulatory peritoneal dialysis patients. J Antimicrob Chemother, 49(3), 578-580. 19. Rybak, M. J., Cappelletty, D. M., Moldovan, T., Aeschlimann, J. R., & Kaatz, G. W. (1998). Comparative in vitro activities and postantibiotic effects of the oxazolidinone compounds eperezolid (PNU-100592) and linezolid (PNU-100766) versus vancomycin against Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother, 42(3), 721-724. 20. Jacqueline, C., Batard, E., Perez, L., et al. (2002). In vivo efficacy of continuous infusion versus intermittent dosing of linezolid compared to vancomycin in a methicillin-resistant Staphylococcus aureus rabbit endocarditis model. Antimicrob Agents Chemother, 46(12), 3706-3711. 21. Stalker, D. J., & Jungbluth, G. L. (2003). Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet, 42(13), 1129-1140. doi: 10.2165/00003088-200342130-00004 22. Honeybourne, D., Tobin, C., Jevons, G., Andrews, J., & Wise, R. (2003). Intrapulmonary penetration of linezolid. J Antimicrob Chemother, 51(6), 1431-1434. doi: 10.1093/jac/dkg262 23. Pletz, M. W., Burkhardt, O., & Welte, T. (2010). Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) pneumonia: linezolid or vancomycin? - Comparison of pharmacology and clinical efficacy. Eur J Med Res, 15(12), 507-513. doi: 10.1186/2047-783x-15-12-507 24. Wienkers, L., Wynalda, M., Feenstra, K., & Slatter, J. (1999). In vitro metabolism of linezolid (PNU-100766): Lack of induction or inhibition of cytochrome P450 enzymes and studies on the mechanism of formation of the major human metabolite, PNU-142586. Paper presented at the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco (CA). 25. Meagher, A. K., Forrest, A., Rayner, C. R., Birmingham, M. C., & Schentag, J. J. (2003). Population pharmacokinetics of linezolid in patients treated in a compassionate-use program. Antimicrob Agents Chemother, 47(2), 548-553. 26. Ide, T., Takesue, Y., Ikawa, K., et al. (2018). Population pharmacokinetics/pharmacodynamics of linezolid in sepsis patients with and without continuous renal replacement therapy. Int J Antimicrob Agents, 51(5), 745-751. doi: 10.1016/j.ijantimicag.2018.01.021 27. Sasaki, T., Takane, H., Ogawa, K., et al. (2011). Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia, in Japanese patients. Antimicrob Agents Chemother, 55(5), 1867-1873. doi: 10.1128/AAC.01185-10 28. Gentry-Nielsen, M. J., Olsen, K. M., & Preheim, L. C. (2002). Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia. Antimicrob Agents Chemother, 46(5), 1345-1351. doi: 10.1128/aac.46.5.1345-1351.2002 29. Haworth, C. S., Banks, J., Capstick, T., et al. (2017). British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 72(Suppl 2), ii1-ii64. doi: 10.1136/thoraxjnl-2017-210927 30. Stevens, D. L., Bisno, A. L., Chambers, H. F., et al. (2014). Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis, 59(2), e10-52. doi: 10.1093/cid/ciu444 31. 江振源(民106)。結核病診治指引。防疫學苑系列(第六版)。台北市:承印。 32. Santini, A., Ronchi, D., Garbellini, M., Piga, D., & Protti, A. (2017). Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin Drug Saf, 16(7), 833-843. doi: 10.1080/14740338.2017.1335305 33. Bernstein, W. B., Trotta, R. F., Rector, J. T., Tjaden, J. A., & Barile, A. J. (2003). Mechanisms for linezolid-induced anemia and thrombocytopenia. Ann Pharmacother, 37(4), 517-520. doi: 10.1345/aph.1C361 34. Tajima, M., Kato, Y., Matsumoto, J., et al. (2016). Linezolid-Induced Thrombocytopenia Is Caused by Suppression of Platelet Production via Phosphorylation of Myosin Light Chain 2. Biol Pharm Bull, 39(11), 1846-1851. doi: 10.1248/bpb.b16-00427 35. Im, J. H., Baek, J. H., Kwon, H. Y., & Lee, J. S. (2015). Incidence and risk factors of linezolid-induced lactic acidosis. Int J Infect Dis, 31, 47-52. doi: 10.1016/j.ijid.2014.12.009 36. Velez, J. C., & Janech, M. G. (2010). A case of lactic acidosis induced by linezolid. Nat Rev Nephrol, 6(4), 236-242. doi: 10.1038/nrneph.2010.20 37. Boutoille, D., Grossi, O., Depatureaux, A., & Tattevin, P. (2009). Fatal lactic acidosis after prolonged linezolid exposure for treatment of multidrug-resistant tuberculosis. Eur J Intern Med, 20(6), e134-135. doi: 10.1016/j.ejim.2008.12.002 38. Cheng, C. N., Lin, S. W., & Wu, C. C. (2018). Early linezolid-associated lactic acidosis in a patient with Child's class C liver cirrhosis and end stage renal disease. J Infect Chemother, 24(10), 841-844. doi: 10.1016/j.jiac.2018.02.002 39. Hsu, S. N., Shih, M. F., Yang, C. W., Wu, C. C., & Chen, C. C. (2015). Severe linezolid-induced lactic acidosis in a cirrhosis patient. Nephrology (Carlton), 20(1), 47-48. doi: 10.1111/nep.12346 40. Narita, M., Tsuji, B. T., & Yu, V. L. (2007). Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy, 27(8), 1189-1197. doi: 10.1592/phco.27.8.1189 41. Del Pozo, J. L., Fernandez-Ros, N., Saez, E., Herrero, J. I., Yuste, J. R., & Banales, J. M. (2014). Linezolid-induced lactic acidosis in two liver transplant patients with the mitochondrial DNA A2706G polymorphism. Antimicrob Agents Chemother, 58(7), 4227-4229. doi: 10.1128/AAC.02856-14 42. Carson, J., Cerda, J., Chae, J. H., Hirano, M., & Maggiore, P. (2007). Severe lactic acidosis associated with linezolid use in a patient with the mitochondrial DNA A2706G polymorphism. Pharmacotherapy, 27(5), 771-774. doi: 10.1592/phco.27.5.771 43. Palenzuela, L., Hahn, N. M., Nelson, R. P., Jr., et al. (2005). Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis, 40(12), e113-116. doi: 10.1086/430441 44. Lin, Y. H., Wu, V. C., Tsai, I. J., et al. (2006). High frequency of linezolid-associated thrombocytopenia among patients with renal insufficiency. Int J Antimicrob Agents, 28(4), 345-351. doi: 10.1016/j.ijantimicag.2006.04.017 45. Wu, V. C., Wang, Y. T., Wang, C. Y., et al. (2006). High frequency of linezolid-associated thrombocytopenia and anemia among patients with end-stage renal disease. Clin Infect Dis, 42(1), 66-72. doi: 10.1086/498509 46. Takahashi, Y., Takesue, Y., Nakajima, K., et al. (2011). Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J Infect Chemother, 17(3), 382-387. doi: 10.1007/s10156-010-0182-1 47. Rao, N., & Hamilton, C. W. (2007). Efficacy and safety of linezolid for Gram-positive orthopedic infections: a prospective case series. Diagn Microbiol Infect Dis, 59(2), 173-179. doi: 10.1016/j.diagmicrobio.2007.04.006 48. Niwa, T., Suzuki, A., Sakakibara, S., et al. (2009). Retrospective cohort chart review study of factors associated with the development of thrombocytopenia in adult Japanese patients who received intravenous linezolid therapy. Clin Ther, 31(10), 2126-2133. doi: 10.1016/j.clinthera.2009.10.017 49. Bishop, E., Melvani, S., Howden, B. P., Charles, P. G., & Grayson, M. L. (2006). Good clinical outcomes but high rates of adverse reactions during linezolid therapy for serious infections: a proposed protocol for monitoring therapy in complex patients. Antimicrob Agents Chemother, 50(4), 1599-1602. doi: 10.1128/AAC.50.4.1599-1602.2006 50. Attassi, K., Hershberger, E., Alam, R., & Zervos, M. J. (2002). Thrombocytopenia associated with linezolid therapy. Clin Infect Dis, 34(5), 695-698. doi: 10.1086/338403 51. Soriano, A., Gomez, J., Gomez, L., et al. (2007). Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur J Clin Microbiol Infect Dis, 26(5), 353-356. doi: 10.1007/s10096-007-0289-1 52. Chen, C., Guo, D. H., Cao, X., et al. (2012). Risk factors for thrombocytopenia in adult chinese patients receiving linezolid therapy. Curr Ther Res Clin Exp, 73(6), 195-206. doi: 10.1016/j.curtheres.2012.07.002 53. Senneville, E., Legout, L., Valette, M., et al. (2004). Risk factors for anaemia in patients on prolonged linezolid therapy for chronic osteomyelitis: a case-control study. J Antimicrob Chemother, 54(4), 798-802. doi: 10.1093/jac/dkh409 54. Thomas, C., & Thomas, L. (2005). Anemia of chronic disease: pathophysiology and laboratory diagnosis. Lab Hematol, 11(1), 14-23. doi: 10.1532/LH96.04049 55. Deng, J., Su, L. X., Liang, Z. X., et al. (2013). Effects of vitamin b6 therapy for sepsis patients with linezolid-associated cytopenias: a retrospective study. Curr Ther Res Clin Exp, 74, 26-32. doi: 10.1016/j.curtheres.2012.12.002 56. Dempsey, S. P., Sickman, A., & Slagle, W. S. (2018). Case Report: Linezolid Optic Neuropathy and Proposed Evidenced-based Screening Recommendation. Optom Vis Sci, 95(5), 468-474. doi: 10.1097/OPX.0000000000001216 57. Zhang, X., Falagas, M. E., Vardakas, K. Z., et al. (2015). Systematic review and meta-analysis of the efficacy and safety of therapy with linezolid containing regimens in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis. J Thorac Dis, 7(4), 603-615. doi: 10.3978/j.issn.2072-1439.2015.03.10 58. Sotgiu, G., Centis, R., D'Ambrosio, L., et al. (2012). Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J, 40(6), 1430-1442. doi: 10.1183/09031936.00022912 59. Mehta, S., Das, M., Laxmeshwar, C., Jonckheere, S., Thi, S. S., & Isaakidis, P. (2016). Linezolid-Associated Optic Neuropathy in Drug-Resistant Tuberculosis Patients in Mumbai, India. PLoS One, 11(9), e0162138. doi: 10.1371/journal.pone.0162138 60. De Vriese, A. S., Coster, R. V., Smet, J., et al. (2006). Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis, 42(8), 1111-1117. doi: 10.1086/501356 61. Rucker, J. C., Hamilton, S. R., Bardenstein, D., Isada, C. M., & Lee, M. S. (2006). Linezolid-associated toxic optic neuropathy. Neurology, 66(4), 595-598. doi: 10.1212/01.wnl.0000201313.24970.b8 62. Ishii, N., Kinouchi, R., Inoue, M., & Yoshida, A. (2016). Linezolid-induced optic neuropathy with a rare pathological change in the inner retina. Int Ophthalmol, 36(6), 761-766. doi: 10.1007/s10792-016-0196-5 63. Fujii, S., Muraoka, S., Miyamoto, A., & Sakurai, K. (2018). [Linezolid-induced Apoptosis through Mitochondrial Damage and Role of Superoxide Dismutase-1 in Human Monocytic Cell Line U937]. Yakugaku Zasshi, 138(1), 73-81. doi: 10.1248/yakushi.17-00133 64. Ener, R. A., Meglathery, S. B., Van Decker, W. A., & Gallagher, R. M. (2003). Serotonin syndrome and other serotonergic disorders. Pain Med, 4(1), 63-74. 65. Clark, D. B., Andrus, M. R., & Byrd, D. C. (2006). Drug interactions between linezolid and selective serotonin reuptake inhibitors: case report involving sertraline and review of the literature. Pharmacotherapy, 26(2), 269-276. doi: 10.1592/phco.26.2.269 66. Bolhuis, M. S., van Altena, R., Uges, D. R., van der Werf, T. S., Kosterink, J. G., & Alffenaar, J. W. (2010). Clarithromycin significantly increases linezolid serum concentrations. Antimicrob Agents Chemother, 54(12), 5418-5419. doi: 10.1128/AAC.00757-10 67. Bolhuis, M. S., van Altena, R., van Soolingen, D., et al. (2013). Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients. Eur Respir J, 42(6), 1614-1621. doi: 10.1183/09031936.00001913 68. Pea, F., Viale, P., Cojutti, P., Del Pin, B., Zamparini, E., & Furlanut, M. (2012). Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother, 67(8), 2034-2042. doi: 10.1093/jac/dks153 69. Gandelman, K., Zhu, T., Fahmi, O. A., et al. (2011). Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol, 51(2), 229-236. doi: 10.1177/0091270010366445 70. Pea, F., Cadeo, B., Cojutti, P. G., Pecori, D., & Bassetti, M. (2014). Linezolid underexposure in a hypothyroid patient on levothyroxine replacement therapy: a case report. Ther Drug Monit, 36(5), 687-689. doi: 10.1097/FTD.0000000000000069 71. Jones, R. N., Fritsche, T. R., Sader, H. S., & Ross, J. E. (2007). Zyvox® Annual Appraisal of Potency and Spectrum Program results for 2006: An activity and spectrum analysis of linezolid using clinical isolates from 16 countries. Diagnostic microbiology and infectious disease, 59(2), 199-209. 72. Dong, H. Y., Xie, J., Chen, L. H., Wang, T. T., Zhao, Y. R., & Dong, Y. L. (2014). Therapeutic drug monitoring and receiver operating characteristic curve prediction may reduce the development of linezolid-associated thrombocytopenia in critically ill patients. Eur J Clin Microbiol Infect Dis, 33(6), 1029-1035. doi: 10.1007/s10096-013-2041-3 73. Matsumoto, K., Shigemi, A., Takeshita, A., et al. (2014). Analysis of thrombocytopenic effects and population pharmacokinetics of linezolid: a dosage strategy according to the trough concentration target and renal function in adult patients. Int J Antimicrob Agents, 44(3), 242-247. doi: 10.1016/j.ijantimicag.2014.05.010 74. Boak, L. M., Rayner, C. R., Grayson, M. L., et al. (2014). Clinical population pharmacokinetics and toxicodynamics of linezolid. Antimicrob Agents Chemother, 58(4), 2334-2343. doi: 10.1128/AAC.01885-13 75. Fiaccadori, E., Maggiore, U., Rotelli, C., et al. (2004). Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit Care Med, 32(12), 2437-2442. 76. Barrasa, H., Soraluce, A., Isla, A., et al. (2018). Pharmacokinetics of linezolid in critically ill patients on continuous renal replacement therapy: Influence of residual renal function on PK/PD target attainment. J Crit Care, 50, 69-76. doi: 10.1016/j.jcrc.2018.11.016 77. Nakamura, Y., Uchiyama, M., Hara, S., et al. (2016). Therapeutic Dose Monitoring for Linezolid in a Patient with MRSA Pneumonia with Bacteremia in Diabetes Insipidus. Infect Dis Ther, 5(1), 81-87. doi: 10.1007/s40121-015-0100-z 78. DeRyke, C. A., & Alexander, D. P. (2009). Optimizing vancomycin dosing through pharmacodynamic assessment targeting area under the concentration-time curve/minimum inhibitory concentration. Hospital pharmacy, 44(9), 751-765. 79. Eknoyan, G., Lameire, N., Eckardt, K., et al. (2013). KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int, 3(1), 5-14. 80. Cockcroft, D. W., & Gault, M. H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron, 16(1), 31-41. doi: 10.1159/000180580 81. Brater, D. C. (1983). Drug Use In Renal Disease. Balgowlah, Australia: ADIS Health Science Press. 82. Naranjo, C. A., Busto, U., Sellers, E. M., et al. (1981). A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther, 30(2), 239-245. 83. Tonneijck, L., Muskiet, M. H., Smits, M. M., et al. (2017). Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol, 28(4), 1023-1039. doi: 10.1681/ASN.2016060666 84. Brown, A. N., Drusano, G. L., Adams, J. R., et al. (2015). Preclinical Evaluations To Identify Optimal Linezolid Regimens for Tuberculosis Therapy. MBio, 6(6), e01741-01715. doi: 10.1128/mBio.01741-15 85. Crass, R. L., Cojutti, P. G., Pai, M. P., & Pea, F. (2019). A Reappraisal of Linezolid Dosing in Renal Impairment to Improve Safety. Antimicrob Agents Chemother. doi: 10.1128/AAC.00605-19 86. Bradley, S. E., Ingelfinger, F. J., & Bradley, G. P. (1952). Hepatic circulation in cirrhosis of the liver. Circulation, 5(3), 419-429. doi: 10.1161/01.cir.5.3.419 87. De Paepe, P., Belpaire, F. M., & Buylaert, W. A. (2002). Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clinical pharmacokinetics, 41(14), 1135-1151. 88. Luque, S., Echeverria-Esnal, D., Martinez-Casanova, J., et al. (2018). 4CPS-059 Linezolid dosing in patients with liver cirrhosis: standard dosing risks’ toxicity. European Journal of Hospital Pharmacy, 25(Suppl 1), A68-A69. doi: 10.1136/ejhpharm-2018-eahpconf.150 89. Bedet, A., Razazi, K., Boissier, F., et al. (2018). Mechanisms of Thrombocytopenia During Septic Shock: A Multiplex Cluster Analysis of Endogenous Sepsis Mediators. Shock, 49(6), 641-648. doi: 10.1097/SHK.0000000000001015 90. Thachil, J., & Warkentin, T. E. (2017). How do we approach thrombocytopenia in critically ill patients? British journal of haematology, 177(1), 27-38. 91. Song, T., Lee, M., Jeon, H. S., et al. (2015). Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis. EBioMedicine, 2(11), 1627-1633. doi: 10.1016/j.ebiom.2015.09.051 92. Brown, S. D., Clark, C., & Gutierrez, G. (1996). Pulmonary lactate release in patients with sepsis and the adult respiratory distress syndrome. J Crit Care, 11(1), 2-8. 93. De Backer, D., Creteur, J., Zhang, H., Norrenberg, M., & Vincent, J. L. (1997). Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med, 156(4 Pt 1), 1099-1104. doi: 10.1164/ajrccm.156.4.9701048 94. Pea, F., Cojutti, P., Dose, L., & Baraldo, M. (2016). A 1 year retrospective audit of quality indicators of clinical pharmacological advice for personalized linezolid dosing: one stone for two birds? Br J Clin Pharmacol, 81(2), 341-348. doi: 10.1111/bcp.12806 95. Sakurai, N., Nakamura, Y., Kawaguchi, H., et al. (2019). Measurement of Linezolid and Its Metabolites PNU-142300 and PNU-142586 in Human Plasma Using Ultra-Performance Liquid Chromatography Method. Chem Pharm Bull (Tokyo), 67(5), 439-444. doi: 10.1248/cpb.c18-00840 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77178 | - |
dc.description.abstract | 背景
Linezolid為oxazolidinone結構之抗生素,多用於治療具抗藥性之革蘭氏陽性球菌及非結核分枝桿菌感染,目前仿單建議劑量除較輕微之皮膚與軟組織感染外皆為600 mg IV/PO q12h,然而對於腎功能不全者沒有劑量調整建議。Linezolid有兩個主要肝臟代謝物:PNU142586及PNU142300,根據臨床前期試驗及單次劑量藥動學研究顯示,兩代謝物在腎功能不全(CLcr < 30 mL/min)者有明顯累積現象,然而後續並無文獻探討其血中濃度與腎功能,或linezolid相關不良反應之間的關聯性。因上述原因,促成本研究欲探討腎功能不全者血中linezolid及其代謝物濃度與藥物不良反應關聯性之動機。 研究目的 本研究主要探討linezolid與其代謝物之血中濃度在不同程度腎功能不全族群中的分佈、建立肌酸酐廓清率與藥物廓清率關係式,以及對於linezolid相關藥物不良反應之影響;此外,利用本族群在藥物不良反應之結果,找出linezolid與代謝物之血中濃度最適範圍。 研究方法 本研究延續前驅研究之前瞻(prospective)、觀察性(observational)設計,收案族群為2016年12月1日至2019年 5月7日間使用linezolid並進行療劑監測的成年病人。以高效能液相層析儀測量linezolid之峰(Cpeak)與谷(Ctrough)濃度,進一步計算最低(Cmin)與最高(Cmax)濃度、24小時濃度經時曲線下面積(AUC24)。在主要分析中僅納入第一次療程之第一次TDM結果,病人資料會以回顧電子病例之方式蒐集,安全性與臨床療效則會追蹤至該episode結束後之7天內,並記錄30天內之死亡率。Linezolid與其代謝物之血中濃度會進一步依照抽血日之肌酸酐廓清率(creatinine clearance, CLcr)分層分析,而不良反應則會依照Naranjo scale分數分類,並將確定與極有可能之不良反應視為linezolid 「相關」不良反應進行後續分析。 在描述性統計部份,會根據資料分佈型態決定以平均值 ± 標準差,或中位數及四分位距(interquartile;IQR)呈現;類別變數則以數量與百分比表示。比較各程度腎功能不全、有或無不良反應之族群與不同臨床療效間的血中濃度指標差異時,會以Mann-Whitney U test進行檢定。在分析腎功能與血中濃度關聯性時,濃度指標(應變數)若為類別變數則使用羅吉斯迴歸進行校正;若濃度指標為連續變數則使用簡單線性迴歸。此外,在不良反應與血中濃度關聯性則使用Cox 迴歸模型進行校正,若發現腎功能、原型藥或代謝物血中濃度為危險因子,則使用ROC分析法及自助抽樣法(boostrap)進行切點分析。 研究結果 本研究共納入117位病人,平均年齡為64.4歲、男女數量大約相等(男性占49.6%),且以住院病人為主(88.9%),約85%的病人於用藥後14天內進行療劑監測,而用藥開始前CLcr ≥ 60 mL/min者共51%、30 ≤ CLcr ≤ 59 mL/min者共25%,CLcr < 30 mL/min者則有24%。 在標準劑量(600 mg q12h)下,約有7成病人使用注射劑型,其linezolid Cmin、 Cmax及AUC24濃度平均分別為12.9 μg/mL、28.8 μg/mL及470.9 mg/L-h;代謝物PNU142586高於LLOQ的比例、平均給藥前血中濃度(僅納入高於LLOQ之濃度)及平均PNU142586/linezolid之比值(M/L ratio)分別為94.4%、13.8 μg/mL及2.2,而化合物 X則為74.7%、7.4 μg/mL及0.8。 依腎功能分層後發現嚴重腎功能不全(CLcr < 30 mL/min)族群相較於腎功能正常(CLcr ≥ 60 mL/min)者,代謝物給藥前濃度累積程度較原型藥劇烈,linezolid Cmin 、給藥前PNU142586濃度與化合物 X濃度約上升至3倍、12倍與8倍。若比較M/L ratio,同樣發現腎功能越差者代謝物累積情形有顯著上升。在校正其他因子後顯示腎功能分類在linezolid Cmin、Cmax、AUC24及 PNU142586與化合物 X之給藥前血中濃度、化合物 X高於LLOQ之比例、PNU142586之對數化M/L ratio及M/L ratio之比例為正向之顯著預測因子,其餘濃度指標無顯著結果。血小板低下、乳酸性酸中毒與血中乳酸上升之不良反應,結果同樣為腎功能越差者,發生比例顯著越高;校正其他因子後,顯示M/L ratio142586 >1者,發生「相關」之血小板低下風險顯著為M/L ratio142586 < 1時的8倍;乳酸性酸中毒與血中乳酸上升之正向顯著風險因子則包括linezolid Cmin >10 μg/mL。 血小板低下之血中濃度與腎功能切點分析則發現,Cmin切點平均為8.54 μg/mL,與pilot study之結果(Cmin平均=9.14 μg/mL)相似1;PNU142586給藥前濃度切點平均則為2.71 μg/mL,且以PNU142586給藥前濃度=3 μg/mL當切點時,其sensitivity及specificity相較於以Cmin=9 μg/mL做為濃度切點時來得好(sensitivity: 62.8 % vs. 57.4%、specificity: 77.3% vs. 65.3%),但以腎功能(CLcr)做為切點時的表現皆劣於上述結果。 結論 本研究首次探討腎功能與linezolid代謝物血中濃度以及藥物不良反應之關聯性。結果與過去文獻相似,顯示相較於正常腎功能者(CLcr ≥ 60 mL/min),嚴重腎功能不全族群(CLcr <30 mL/min)在兩個linezolid肝臟代謝物的血中濃度皆有大幅累積。不良反應分析結果也發現linezolid Cmin及 M/L ratio142586 >1為「相關」之血小板低下的風險因子。在切點分析得PNU142586給藥前血中濃度之最佳切點約為3 μg/mL,且sensitivity及specifcity之表現皆優於以Cmin = 9 μg/mL或CLcr = 70 mL/min做為切點時之結果。本研究結果將應用於後續TDM、劑量調整與藥物不良反應之監測,以提升用藥安全。 | zh_TW |
dc.description.abstract | Background
Linezolid is an oxazolidinone antibiotic, which is widely used in Gram-positive cocci (GPC) and Mycobacterium spp. According to the U.S. food and drug administration (FDA) labeling, 600 mg PO/IV q12h was recommended to almost all of the GPC infection. In the clinical practice, the challenge of treatment is the side effects of linezolid. Moreover, linezolid-induced thrombocytopenia is considered as a concentration-dependent side effect in most of studies. Meanwhile, the incidence of linezolid-induced thrombocytopenia was significantly higher in patients with impaired renal function. Its two metabolites, PNU142300 and PNU142586, has a 7 -8 fold increase in exposure in severe renal impairment (CLcr < 30 mL/min), but there is no dose adjustment suggestion for this group, and the clinical significance of metabolite accumulation is not yet fully elucidated. Objective This study is aimed to investigate the association between plasma levels of linezolid and its metabolites in renal impairment. Meanwhile, confirming the effects of accumulation on linezolid-induced adverse effects. Finally, we want to identity the optimal range of creatinine clearance, plasma levels of linezolid and its metabolites. Methods We conducted a prospective observational study from December 1, 2016 to May 7, 2019 at National Taiwan University Hospital (NTUH). Linezolid adult users with at least 1 therapeutic drug monitoring (TDM) of linezolid were enrolled. High-performance liquid chromatography (HPLC) was appiled for plasma trough and peak level measurement. The minimum concentration (Cmin), maximum concentration (Cmax) and area under the 24-hour concentration-time curve (AUC24) was calculated at same time. Data was collected via electronic medical charts. Only the first TDM of the first course in each patient would be assessed. In concentration analysis, we calculated the renal function at the day blood was drawn by Cockcroft and Gault equation. Linear regression and logistic regression was performed to find out the correlation between plasma levels and renal function. Safety and clinical outcomes were assessed until 7 days after the completion of each episodes, and mortality at day 30 was also recorded. Furthermore, the correlation between plasma levels and ADRs was adjusted by using Cox proportional hazard model. Cut-off points were analyzed through application of receiver operating characteristic (ROC) curve and of bootstrap methods. In general, we comparing the difference of outcomes between two groups in this study by using Mann-Whitney U test. Significance level was 0.05. Results A total of 117 patients were enrolled, mean age were 64.4 years old. Most of the patients were inpatient (88.9%), and around 85% of them performed TDM within 14 days after linezolid use. Percentage of the patients with baseline CLcr ≥ 60 mL/min was 51%. In the end, a total of 115 episodes were included for analysis. 73% of the episodes used injection form linezolid with standard dosage (600 mg q12h), and the mean linezolid Cmin, Cmax and AUC24 were 12.9 μg/mL, 28.8 μg/mL and 470.9 mg/L-h, respectively. Mean plasma level before the next dose and metabolite/linezolid ratio (M/L ratio) of PNU142586 were 13.8 μg/mL and 2.2. Compared with patients with normal renal function, patients with severe renal impairment experienced more accumulations of metabolites: the plasma level of linezolid and PNU142586 before the next dose showed 3 and 12-folds. M/L ratio was also higher. In multivariable regression, a worse renal function was found to be a significant predict factor for linezolid Cmin, Cmax and AUC24. Similar results were found in M/L ratio with log transformation or M/L ratio >1 of PNU142586. In safety outcome analysis, we also found that the higher severity of renal impairment, the higher incidence rate of thrombocytopenia, lactic acidosis and elevated serum lactate level (p<0.05). The results from multivariable Cox regression showed when M/L ratio142586 >1, the hazard of “related” thrombocytopenia was significantly increased. And there was a positive finding between linezolid Cmin >10 μg/mL and the hazard of lactic acidosis and elevated serum lactate level. The cut-off point for the upper limit of Cmin in terms of thrombocytopenia in this study was similar to it was in pilot study (8.54 μg/mL vs. 9.14 μg/mL), but the sensitivity and specificity were improved when using 3 μg/mL as the cut-off point for the upper limit of plasma level of PNU142586 (sensitivity= 62.8 %, specificity= 77.3%). Lowest sensitivity and specificity were found when using CLcr = 70 mL/min as the cut-off point. Conclusion This study was the first study which aimed to find the association between ADRs and plasma concentrations of two metabolites of linezolid in patients with renal impairment. Overall, our results were consisted with previously published literatures, which showed plasma level of its metabolites has increase in exposure in patients with severe renal impairment. In addition, we found a positive correlation between M/L ratio142586 and linezolid-related thrombocytopenia, and the cut-off point for the upper limit of plasma level before the next dose of PNU142586 was 3 μg/mL. These results indicated that performing TDM may prevent ADRs. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:35Z (GMT). No. of bitstreams: 1 ntu-108-R06451004-1.pdf: 2837082 bytes, checksum: 46f8588218a37087f72e87aca9baaba9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 謝辭 i
縮寫表 ii 中文摘要 v Abstract viii 目錄 xi 表目錄 xvi 圖目錄 xxii 第一章 緒論 1 第二章 文獻回顧與探討 2 2.1 Linezolid 簡介 2 2.1.1 機轉 2 2.1.2 抗菌譜(spectrum) 3 2.1.3 藥品動態學(Pharmacokinetics) 6 2.1.3.1 腎功能不全及洗腎族群 8 2.1.4 藥效學(Pharmacodynamics) 10 2.1.5 適應症與建議劑量 11 2.1.6 相關嚴重不良反應 13 2.1.7 藥物交互作用 16 2.2 藥物療劑監測(Theraeutic drug monitoring, TDM) 18 2.2.1 血中濃度與療效關聯性 18 2.2.2 血中濃度與不良反應關聯性 19 2.2.3 腎功能不全及洗腎族群之血中藥物濃度 19 第三章 研究目的 25 第四章 研究方法 26 4.1 架構 26 4.2 研究對象 26 4.3 納入及排除條件 27 4.4 資料收集 27 4.4.1 病人基本資料 27 4.4.2 給藥時間及抽血時間點 28 4.4.3 藥品動態學參數計算 28 4.4.4 不良反應與臨床療效追蹤方式 30 4.5 測量方法 30 4.5.1 血中濃度樣品前處理 30 4.5.2 標準品配置 31 4.5.3 分析條件 31 4.6 腎功能與血中濃度分析 32 4.6.1 腎功能分組依據 32 4.6.2 血中濃度分析條件 33 4.7 不良反應評估 33 4.7.1 不良反應定義 33 4.7.2 不良反應評估特殊考量 34 4.7.3 不良反應起始與恢復時間(Time to onset and recovery) 37 4.8 臨床療效評估 37 4.9 疾病嚴重度與共病症評估 37 4.10 統計分析 38 4.10.1 腎功能與血中濃度分析 38 4.10.2 濃度與不良反應之關聯性 38 4.10.3 Linezolid 血中濃度與臨床療效 39 第五章 研究結果 40 5.1 分析方法確效 40 5.2 收案情形 45 5.3 病人基本資料(Characteristics) 45 5.3.1 病人基本資料 45 5.3.2 感染症 49 5.3.3 劑量與療程 50 5.3.4 血中濃度分布 51 5.3.4.1 常用給藥方案(dosing regimen)之血中濃度分布 51 5.3.4.2 腎功能與血中濃度關聯性 53 5.3.4.3 腎功能分層分析後與血中濃度關聯性 57 5.3.5 藥品動態學參數 59 5.4 Linezolid與代謝物血中濃度影響因子之分析 63 5.4.1 單變數迴歸分析 63 5.4.2 多變數迴歸分析 75 5.5 不良反應分析 79 5.5.1 不良反應評估 79 5.5.2 腎功能與不良反應 79 5.5.3 不良反應與血中濃度分布 82 5.5.3.1 不良反應與linezolid Cmin之關聯性 82 5.5.3.2 代謝物(PNU142586 、化合物 X)相關 84 5.5.4 不良反應迴歸分析 87 5.5.4.1 血小板低下(Thrombocytopenia) 87 5.5.4.2 貧血(Anemia) 92 5.5.4.3 白血球低下(Leukopenia) 93 5.5.4.4 血中乳酸濃度上升(Elevated lactate level) 95 5.5.4.5 乳酸性酸中毒(Lactic acidosis) 96 5.6 不良反應(血小板低下)與濃度及腎功能切點 99 5.6.1 Linezolid Cmin 99 5.6.2 給藥前之PNU142586 血中濃度 99 5.6.3 腎功能(CLcr) 100 5.7 臨床療效分析 100 5.7.1 臨床療效評估 100 5.7.2 Linezolid血中濃度與臨床療效 101 5.8 透析族群血中濃度分析 108 5.9 多次TDM分析 108 5.9.1 持續TDM追蹤之分析 108 5.9.1.1 血中濃度分佈 108 5.9.1.2 達建議療效範圍比例 109 5.9.1.3 不良反應發生比例 110 5.9.2 TDM劑量調整與濃度變化 111 第六章 討論 113 6.1 藥物分析條件之確效 113 6.2 藥物劑量與血中濃度 114 6.3 腎功能與linezolid及其代謝物血中濃度分析 115 6.3.1 血中肌酸酐廓清率與藥物廓清率 117 6.3.2 濃度影響因子 118 6.4 不良反應與linezolid及其代謝物血中濃度分析 122 6.4.1 不良反應發生率 122 6.4.2 不良反應影響因子 123 6.4.2.1 血小板低下 123 6.4.2.2 乳酸性中毒及血中乳酸濃度上升 125 6.4.3 不良反應與濃度及腎功能切點 126 6.5 臨床療效與linezolid血中濃度分析 127 6.6 透析與血中濃度變化 128 6.7 具血液腫瘤病史之族群探討 128 6.7.1 族群基本特性比較 128 6.7.2 藥動學參數 132 6.7.3 血中濃度分布 132 6.8 劑量調整分析 135 6.9 研究優勢與限制 136 6.10 未來展望 138 第七章 結論 139 參考文獻 140 附錄 149 | |
dc.language.iso | zh-TW | |
dc.title | 腎功能不全者血中linezolid及其代謝物濃度與藥物不良反應之關聯性研究 | zh_TW |
dc.title | Association between Adverse Drug Reactions and Plasma Concentrations of Linezolid and its Metabolites in Patients with Renal Impairment | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王振泰(Jann-Tay Wang),郭錦樺(Ching-Hua Kuo),王繼娟(Chi-Chuan Wang) | |
dc.subject.keyword | Linezolid,療劑監測,腎功能不全,不良反應,代謝物,PNU142586,PNU142300, | zh_TW |
dc.subject.keyword | Linezolid,therapeutic drug monitoring,renal impairment,adverse drug reactions,metabolites,PNU142586,PNU142300, | en |
dc.relation.page | 169 | |
dc.identifier.doi | 10.6342/NTU201903953 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
顯示於系所單位: | 臨床藥學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06451004-1.pdf 目前未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。