Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋zh_TW
dc.contributor.author林昱廷zh_TW
dc.contributor.authorYu-Ting Linen
dc.date.accessioned2021-07-10T21:49:32Z-
dc.date.available2024-08-20-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationSteven M George, Atomic layer deposition: an overview. Chemical reviews, 2009. 110(1): p. 111-131.
Ofer Sneh, et al., Thin film atomic layer deposition equipment for semiconductor processing. Thin solid films, 2002. 402(1-2): p. 248-261.
Riikka L Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of applied physics, 2005. 97(12): p. 9.
Gu Young Cho, et al., Study of Y2O3 thin film prepared by plasma enhanced atomic layer deposition. ECS Transactions, 2014. 64(9): p. 15-21.
Raija Matero, et al., Effect of water dose on the atomic layer deposition rate of oxide thin films. Thin solid films, 2000. 368(1): p. 1-7.
Kie Jin Park, et al., In Situ Auger Electron Spectroscopy Study of Atomic Layer Deposition: Growth Initiation and Interface Formation Reactions during Ruthenium ALD on Si− H, SiO2, and HfO2 Surfaces. Langmuir, 2007. 23(11): p. 6106-6112.
HB Profijt, et al., Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science Technology A: Vacuum, Surfaces, Films, 2011. 29(5): p. 050801.
JL Van Hemmen, et al., Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor. Journal of the Electrochemical Society, 2007. 154(7): p. G165-G169.
Markku Leskelä and Mikko Ritala, Atomic layer deposition chemistry: recent developments and future challenges. Angewandte Chemie International Edition, 2003. 42(45): p. 5548-5554.
Gijs Dingemans, et al., Plasma-assisted atomic layer deposition of low temperature SiO2. ECS Transactions, 2011. 35(4): p. 191-204.
Harald Benjamin Profijt, Plasma-surface interaction in plasma-assisted atomic layer deposition. 2012, Ph. D. thesis, Eindhoven University of Technology.
John Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics, 2005. 69(2): p. 327.
Yee-Chia Yeo, Tsu-Jae King, and Chenming Hu, Direct tunneling leakage current and scalability of alternative gate dielectrics. Applied physics letters, 2002. 81(11): p. 2091-2093.
KR Farmer, MO Andersson, and O Engström, Time‐dependent positive charge generation in very thin silicon oxide dielectrics. Applied physics letters, 1992. 60(6): p. 730-732.
Michel Houssa, et al., Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions. Materials Science Engineering: R: Reports, 2006. 51(4-6): p. 37-85.
J Robertson, High dielectric constant oxides. The European Physical Journal-Applied Physics, 2004. 28(3): p. 265-291.
Nan Lu, High-permittivity dielectrics and high mobility semiconductors for future scaled technology: Hf-based High-K gate dielectrics and interface engineering for HfO₂/Ge CMOS device. 2006.
John Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science Technology B: Microelectronics Nanometer Structures Processing, Measurement, Phenomena, 2000. 18(3): p. 1785-1791.
Hiroyuki Fujiwara, Spectroscopic ellipsometry: principles and applications. 2007: John Wiley & Sons.
鄭信民, et al., X 光繞射應用簡介. 2002.
A Ogawa, et al., 0.6 nm-EOT high-k gate stacks with HfSiOx interfacial layer grown by solid-phase reaction between HfO2 and Si substrate. Microelectronic engineering, 2007. 84(9-10): p. 1861-1864.
VV Afanas’ ev, et al., Electron energy barriers between (100) Si and ultrathin stacks of SiO 2, Al 2 O 3, and ZrO 2 insulators. Applied Physics Letters, 2001. 78(20): p. 3073-3075.
DH Triyoso, et al., Physical and electrical characteristics of HfO2 gate dielectrics deposited by ALD and MOCVD. Journal of the Electrochemical Society, 2005. 152(3): p. G203-G209.
O. van der Straten, et al., Impact of Direct Plasma Densification on Resistivity and Conformality of PEALD Tantalum Nitride. ECS Transactions, 2013. 50(13): p. 159-164.
SM Rossnagel and JJ Cuomo, Film modification by low energy ion bombardment during deposition. Thin solid films, 1989. 171(1): p. 143-156.
T Takagi, Ion–surface interactions during thin film deposition. Journal of Vacuum Science Technology A: Vacuum, Surfaces, Films, 1984. 2(2): p. 382-388.
Karl‐Heinz Müller, Model for ion‐assisted thin‐film densification. Journal of applied physics, 1986. 59(8): p. 2803-2807.
Kevin J Yang and Chenming Hu, MOS capacitance measurements for high-leakage thin dielectrics. IEEE Transactions on Electron Devices, 1999. 46(7): p. 1500-1501.
Wen-Chin Lee and Chenming Hu, Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction-and valence-band electron and hole tunneling. IEEE Transactions on Electron Devices, 2001. 48(7): p. 1366-1373.
LF Mao and ZO Wang, First‐principles simulations of the leakage current in metal–oxide–semiconductor structures caused by oxygen vacancies in HfO2 high‐K gate dielectric. physica status solidi, 2008. 205(1): p. 199-203.
Samares Kar, Extraction of the capacitance of ultrathin high-K gate dielectrics. IEEE Transactions on Electron Devices, 2003. 50(10): p. 2112-2119.
FP Heiman and G Warfield, The effects of oxide traps on the MOS capacitance. IEEE Transactions on Electron Devices, 1965. 12(4): p. 167-178.
Chun Zhao, Dielectric relaxation and frequency dependence of Hf02 doped by lanthanide elements. 2014, University of Liverpool.
G Lucovsky, et al., Intrinsic nanocrystalline grain-boundary and oxygen atom vacancy defects in ZrO2 and HfO2. Radiation Physics Chemistry, 2006. 75(11): p. 2097-2101.
Jihwan An, et al., Plasma processing for crystallization and densification of atomic layer deposition BaTiO3 thin films. ACS applied materials interfaces, 2014. 6(13): p. 10656-10660.
Taeyoon Kim, et al., Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaO x bipolar resistive switching. Scientific reports, 2018. 8(1): p. 8532.
Xinyi Li, et al., Study of oxygen vacancies' influence on the lattice parameter in ZnO thin film. Materials Letters, 2012. 85: p. 25-28.
John CC Fan and John B Goodenough, X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films. Journal of applied physics, 1977. 48(8): p. 3524-3531.
E Ravizza, et al., XPS composition study of stacked Si oxide/Si nitride/Si oxide nano‐layers. Surface Interface Analysis, 2012. 44(8): p. 1209-1213.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77177-
dc.description.abstract本論文主要在研究電漿處理對原子層沉積技術(Atomic layer deposition, ALD)的影響。在 thermal mode ALD中加入電漿處理後,發現薄膜厚度有被抑制的效果。本研究進一步將電漿處理應用於高介電係數介電層的製程中,經電漿處理後的金屬氧化物半導體(metal-oxide-semiconductor, MOS)電容元件,相較於一般thermal mode ALD製程,有明顯不同的電性表現,可以有效提升MOS電容元件的電容並降低其漏電流。透過X光反射(X-ray reflectivity)圖譜的分析可以發現,經由電漿處理的高介電係數介電層具有較高的薄膜密度。此外,X射線光電子能譜(X-ray photoemission spectroscopy)的量測指出,電漿處理可以降低高介電係數介電薄膜中的氧空缺含量。藉由thermal mode ALD技術與電漿處理的進一步優化,可以達到MOS電容元件最佳之電性表現目標。zh_TW
dc.description.abstractThis thesis focuses on the effect of plasma treatment on the atomic layer deposition (ALD) process. The growth rate of the ALD process is suppressed by the plasma treatment. In addition, the plasma treatment contributes to significant impact on electrical properties of high-K gate dielectrics in metal-oxide-semiconductor (MOS) capacitors. The high-K gate dielectric treated by the plasma treatment exhibits a superior performance than that prepared by the thermal mode ALD process. The capacitance is enhanced and the leakage current is reduced significantly by the plasma treatment, which is ascribed to the film densification as revealed by the X-ray reflectivity. The X-ray photoemission spectroscopy analysis indicates that the oxygen is suppressed by the plasma treatment. The optimization of the thermal mode ALD process and the plasma treatment leads to the significant enhancement of the electrical performance of MOS capacitors.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:49:32Z (GMT). No. of bitstreams: 1
ntu-108-R06527063-1.pdf: 3205861 bytes, checksum: 0fb0a59f58fc4814cb2135370dec23a4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第 1 章 簡介 1
1.1 原子層沉積技術 1
1.1.1 原子層沉積技術 1
1.1.2 電漿輔助原子層沉積技術 8
1.2 高介電係數材料 13
1.3 量測儀器簡介 15
1.3.1 X光光電子能譜儀(X-ray Photoemission Spectroscopy, XPS) 15
1.3.2 橢圓偏振儀(Spectroscopic Ellipsometry, SE) 16
1.3.3 低掠角X光繞射(Grazing Incident X-ray Diffraction, GIXRD) 17
1.3.4 X光反射率(X-ray Reflectivity) 19
第 2 章 原子層技術用於高介電材料閘極介電層之效能增強 21
2.1 研究動機 21
2.2 實驗步驟 23
2.2.1 前驅物介紹 29
2.3 實驗結果與討論 29
2.3.1 薄膜厚度分析 29
2.3.2 XRR密度分析 32
2.3.3 AFM薄膜平整度分析 37
2.3.4 薄膜MOS/MIM電性分析 37
2.3.5 XPS interfacial layer分析 57
2.3.6 TEM cross section分析 69
2.4 結論 71
參考資料 72
-
dc.language.isozh_TW-
dc.subject金屬氧化物半導體電容元件zh_TW
dc.subject高介電係數介電層zh_TW
dc.subject電漿處理zh_TW
dc.subject原子層沉積技術zh_TW
dc.subjectplasma treatmenten
dc.subjecthigh-K gate dielectricsen
dc.subjectatomic layer deposition (ALD)en
dc.subjectmetal-oxide-semiconductor (MOS) capacitorsen
dc.title原子層技術應用於High-k閘極介電層效能增強之研究zh_TW
dc.titleAtomic Layer Technology For Performance Enhancement of High-K Gate Dielectricsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡振國;林新智;謝宗霖zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword金屬氧化物半導體電容元件,原子層沉積技術,高介電係數介電層,電漿處理,zh_TW
dc.subject.keywordmetal-oxide-semiconductor (MOS) capacitors,atomic layer deposition (ALD),high-K gate dielectrics,plasma treatment,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU201903233-
dc.rights.note未授權-
dc.date.accepted2019-08-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved