請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77168完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳平 | zh_TW |
| dc.contributor.advisor | RICHARD PING CHENG | en |
| dc.contributor.author | 劉建祥 | zh_TW |
| dc.contributor.author | Chien-Hsiang Liu | en |
| dc.date.accessioned | 2021-07-10T21:49:13Z | - |
| dc.date.available | 2024-09-01 | - |
| dc.date.copyright | 2019-09-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Chapter 1
1. Shimizu, Y.; Kanamori, T.; Ueda, T., Protein synthesis by pure translation systems. Methods 2005, 36, 299-304. 2. Kamtekar, S.; Schiffer, J. M.; Xiong, H.; Babik, J. M.; Hecht, M. H., Protein design by binary patterning of polar and nonpolar amino acids. Science 1993, 262, 1680-1685. 3. Zhang, B.; Cech, T. R., Peptide bond formation by in vitro selected ribozymes. Nature 1997, 390, 96-100. 4. Pauling, L.; Corey, R. B., The planarity of the amide group in polypeptides. J. Am. Chem. Soc. 1952, 74, 3964-3964. 5. Schellman, J. A.; Schellman, C. G., Kaj ulrik linderstrøm-lang Protein. Sci. 1997, 6, 1092-1100. 6. Meng, F.; Kurgan, L., Computational prediction of protein secondary structure from sequence. Curr. Protoc. Protein. Sci. 2016, 86, 1-10. 7. Pauling, L.; Corey, R. B.; Branson, H. R., The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205-211. 8. Oklejas, V.; Zong, C.; Papoian, G. A.; Wolynes, P. G., Protein structure prediction: do hydrogen bonding and water-mediated interactions suffice? Methods 2010, 52, 84-90. 9. Carugo, O.; Djinović-Carugo, K., A proteomic Ramachandran plot (PRplot). Amino Acids 2013, 44, 781-790. 10. Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V., Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95-99. 11. Chitnumsub, P.; Fiori, W. R.; Lashuel, H. A.; Diaz, H.; Kelly, J. W., The nucleation of monomeric parallel -sheet-like structures and their self-assembly in aqueous solution. Bioorg. Med. Chem. 1999, 7, 39-59. 12. Edsall, J. T.; Flory, P. J.; Kendrew, J. C.; Liquori, A. M.; Nemethy, G.; Ramachandran, G. N.; Scheraga, H. A., A proposal of standard conventions and nomenclature for the description of polypeptide conformations. J. Mol. Biol. 1966, 15, 399-407. 13. Chebrek, R.; Leonard, S.; de Brevern, A. G.; Gelly, J.-C., Polyproline: polyproline helix II and secondary structure assignment database. Database 2014, 2014. 14. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 15. Dill, K. A., Dominant forces in protein folding. Biochemistry 1990, 29, 7133-7155. 16. Trikulenko, A. V., Role of hydrophobic interactions in protein chain folding during biosynthesis. Biochemistry 1998, 63, 564-567. 17. Ackers, G.; Doyle, M.; Myers, D.; Daugherty, M., Molecular code for cooperativity in hemoglobin. Science 1992, 255, 54-63. 18. Fink, A. L., Chaperone-mediated protein folding. Physiol. Rev. 1999, 79, 425-49. 19. Kumar, S.; Nussinov, R., Close-range electrostatic interactions in proteins. ChemBioChem 2002, 3, 604-617. 20. Sheridan, R. P.; Levy, R. M.; Salemme, F. R., α-Helix dipole model and electrostatic stabilization of 4-α-helical proteins. Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 4545-4549. 21. Stickle, D. F.; Presta, L. G.; Dill, K. A.; Rose, G. D., Hydrogen bonding in globular proteins. J. Mol. Biol. 1992, 226, 1143-1159. 22. Robertson, A. D.; Murphy, K. P., Protein structure and the energetics of protein stability. Chem. Rev. 1997, 97, 1251-1268. 23. Spolar, R. S.; Ha, J. H.; Record, M. T., Jr., Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 8382-8385. 24. Margenau, H., Van der waals forces. Rev. Mod. Phys. 1939, 11, 1-35. 25. Roth, C. M.; Neal, B. L.; Lenhoff, A. M., Van der Waals interactions involving proteins. Biophys. J. 1996, 70, 977-987. 26. Gelse, K.; Poschl, E.; Aigner, T., Collagens-structure, function, and biosynthesis. Adv. Drug. Deliv. Rev. 2003, 55, 1531-1546. 27. Persikov, A. V.; Ramshaw, J. A.; Brodsky, B., Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343-19349. 28. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967. 29. Chan, V. C.; Ramshaw, J. A.; Kirkpatrick, A.; Beck, K.; Brodsky, B., Positional preferences of ionizable residues in Gly-X-Y triplets of the collagen triple-helix. J. Biol. Chem. 1997, 272, 31441-31146. 30. Bodian, D. L.; Madhan, B.; Brodsky, B.; Klein, T. E., Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry 2008, 47, 5424-5432. 31. Kuo, H.-T.; Fang, C.-J.; Tsai, H.-Y.; Yang, M.-F.; Chang, H.-C.; Liu, S.-L.; Kuo, L.-H.; Wang, W.-R.; Yang, P.-A.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P., Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 2013, 52, 9212-9222. 32. Benzinger, T. L. S.; Gregory, D. M.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Botto, R. E.; Meredith, S. C., Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 13407-13412. 33. Richardson, J. S., The anatomy and taxonomy of protein structure. Adv. Protein. Chem. 1981, 34, 167-339. 34. Chothia, C., Conformation of twisted β-pleated sheets in proteins. Journal of Molecular Biology 1973, 75, 295-302. 35. Pauling, L.; Corey, R. B., The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 35, 251-257. 36. Pauling, L.; Corey, R. B., Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 235-241. 37. Chou, P. Y.; Fasman, G. D., Prediction of b-turns. Biophys. J. 1979, 26, 367-383. 38. Zimmerman, S. S.; Scheraga, H. A., Local interactions in bends of proteins. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 4126-4129. 39. Syud, F. A.; Stanger, H. E.; Gellman, S. H., Interstrand side chain−side chain interactions in a designed β-hairpin: Significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-8677. 40. Merkel, J. S.; Sturtevant, J. M.; Regan, L., Sidechain interactions in parallel b sheets: the energetics of cross-strand pairings. Structure 1999, 7, 1333-1343. 41. Freire, F.; Fisk, J. D.; Peoples, A. J.; Ivancic, M.; Guzei, I. A.; Gellman, S. H., Diacid linkers that promote parallel β-sheet secondary structure in water. J. Am. Chem. Soc. 2008, 130, 7839-7841. 42. Fooks, H. M.; Martin, A. C. R.; Woolfson, D. N.; Sessions, R. B.; Hutchinson, E. G., Amino acid pairing preferences in parallel β-sheets in proteins. J. Mol. Biol. 2006, 356, 32-44. 43. Smith, C. K.; Withka, J. M.; Regan, L., A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry 1994, 33, 5510-5517. 44. Smith, C. K.; Regan, L., Guidelines for protein design: The energetics of β-sheet side chain interactions. Science 1995, 270, 980-982. 45. Chou, P. Y.; Fasman, G. D., Conformational parameters for amino acids in helical, -sheet, and random coil regions calculated from proteins. Biochemistry 1974, 13, 211-222. 46. Minor, D. L.; Kim, P. S., Measurement of the β-sheet-forming propensities of amino acids. Nature 1994, 367, 660-663. 47. Kim, C. A.; Berg, J. M., Thermodynamic -sheet propensities measured using a zinc-finger host peptide. Nature 1993, 362, 267-270. 48. Merkel, J. S.; Sturtevant, J. M.; Regan, L., Sidechain interactions in parallel β sheets: the energetics of cross-strand pairings. Structure 1999, 7, 1333-1343. 49. Minor, D. L.; Kim, P. S., Context is a major determinant of β-sheet propensity. Nature 1994, 371, 264-267. 50. Sander, J. D.; Zaback, P.; Joung, J. K.; Voytas, D. F.; Dobbs, D., Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic. Acids. Res. 2007, 35, 599-605. 51. Almeida, A. M.; Li, R.; Gellman, S. H., Parallel β-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. J. Am. Chem. Soc. 2012, 134, 75-78. 52. Petkova, A. T.; Leapman, R. D.; Guo, Z.; Yau, W.-M.; Mattson, M. P.; Tycko, R., Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 2005, 307, 262-265. Chapter 2 1. Di Lullo, G. A.; Sweeney, S. M.; Korkko, J.; Ala-Kokko, L.; San Antonio, J. D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 2002, 277, 4223-4231. 2. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554. 3. Long, C. G.; Braswell, E.; Zhu, D.; Apigo, J.; Baum, J.; Brodsky, B., Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence. Biochemistry 1993, 32, 11688-11695. 4. Gelse, K.; Poschl, E.; Aigner, T., Collagens-structure, function, and biosynthesis. Adv. Drug. Deliv. Rev. 2003, 55, 1531-1546. 5. Chan, V. C.; Ramshaw, J. A.; Kirkpatrick, A.; Beck, K.; Brodsky, B., Positional preferences of ionizable residues in Gly-X-Y triplets of the collagen triple-helix. J. Biol. Chem. 1997, 272, 31441-31146. 6. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 7. Boudko, S. P.; Bächinger, H. P., Structural insight for chain selection and stagger control in collagen. Sci. Rep. 2016, 6, 37831. 8. Persikov, A. V.; Ramshaw, J. A.; Brodsky, B., Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343-19349. 9. Bodian, D. L.; Madhan, B.; Brodsky, B.; Klein, T. E., Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry 2008, 47, 5424-5432. 10. Katz, E. P.; David, C. W., Energetics of intrachain salt-linkage formation in collagen. Biopolymers 1990, 29, 791-798. 11. Venugopal, M. G.; Ramshaw, J. A.; Braswell, E.; Zhu, D.; Brodsky, B., Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 1994, 33, 7948-7956. 12. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967. 13. Fallas, J. A.; Hartgerink, J. D., Computational design of self-assembling register-specific collagen heterotrimers. Nat. Commun. 2012, 3, 1087-1094. 14. Holmgren, S. K.; Bretscher, L. E.; Taylor, K. M.; Raines, R. T., A hyperstable collagen mimic. Chem. Biol. 1999, 6, 63-70. 15. Berg, R. A.; Prockop, D. J., The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 1973, 52, 115-120. 16. Nagarajan, V.; Kamitori, S.; Okuyama, K., Structure analysis of a collagen-model peptide with a (Pro-Hyp-Gly) sequence repeat. J. Biochem. 1999, 125, 310-318. 17. Hall, D. A.; Reed, R., Hydroxyproline and thermal stability of collagen. Nature 1957, 180, 243-244. 18. Hodges, J. A.; Raines, R. T., Stereoelectronic and steric effects in the collagen triple helix: toward a code for strand association. J. Am. Chem. Soc. 2005, 127, 15923-15932. 19. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T., Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 2001, 123, 777-778. 20. Yang, W.; Chan, V. C.; Kirkpatrick, A.; Ramshaw, J. A.; Brodsky, B., Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. J. Biol. Chem. 1997, 272, 28837-28840. 21. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 2005, 44, 1414-1422. 22. Luo, T.; Kiick, K. L., Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials. Eur. Polym. J. 2013, 49, 2998-3009. 23. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Peptide investigations of pairwise interactions in the collagen triple-helix. J. Mol. Biol. 2002, 316, 385-394. 24. Xu, F.; Zahid, S.; Silva, T.; Nanda, V., Computational design of a collagen A:B:C-type heterotrimer. J. Am. Chem. Soc. 2011, 133, 15260-15263. 25. Davis, J. M.; Bächinger, H. P., Hysteresis in the triple helix-coil transition of type III collagen. J. Biol. Chem. 1993, 268, 25965-25972. 26. Mizuno, K.; Boudko, S. P.; Engel, J.; Bächinger, H. P., Kinetic hysteresis in collagen folding. Biophys. J. 2010, 98, 3004-3014. 27. Persikov, A. V.; Xu, Y.; Brodsky, B., Equilibrium thermal transitions of collagen model peptides. Protein. Sci. 2004, 13, 893-902. 28. Xu, F.; Silva, T.; Joshi, M.; Zahid, S.; Nanda, V., Circular permutation directs orthogonal assembly in complex collagen peptide mixtures. J. Biol. Chem. 2013, 288, 31616-31623. 29. Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L., Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 1993, 32, 5560-5565. 30. Fallas, J. A.; Hartgerink, J. D., Computational design of self-assembling register-specific collagen heterotrimers. Nat. Commun. 2012, 3, 1087. 31. Cheng, R. P.; Girinath, P.; Suzuki, Y.; Kuo, H.-T.; Hsu, H.-C.; Wang, W.-R.; Yang, P.-A.; Gullickson, D.; Wu, C.-H.; Koyack, M. J.; Chiu, H.-P.; Weng, Y.-J.; Hart, P.; Kokona, B.; Fairman, R.; Lin, T.-E.; Barrett, O., Positional effects on helical Ala-based peptides. Biochemistry 2010, 49, 9372-9384. 32. Fields, G. B.; Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein. Res. 1990, 35, 161-214. 33. Wang, W.-M., Effect of the number of POG triplets on heterotrimeric collagen triple helix stability and specificity. M.S. Thesis, National Taiwan University 2017. 34. Leikina, E.; Mertts, M. V.; Kuznetsova, N.; Leikin, S., Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1314-1318. 35. Yu, C.-H., Effect of charged amino acid side chain length on ABC heterotrimeric collagen triple helix stability. M.S. Thesis, National Taiwan University 2018. 36. Horovitz, A., Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold. Des. 1996, 1, R121-R126. 37. Chen, Y.-C., Effect of positively charged amino acid side chain length at the X position and the Y position on collagen triple helix stability. M.S. Thesis, National Taiwan University 2018. 38. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T., How to measure and predict the molar absorption coefficient of a protein. Protein. Sci. 1995, 4, 2411-2423. 39. Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 1967, 6, 1948-1954. 40. Engel, J.; Chen, H.-T.; Prockop, D. J.; Klump, H., The triple helix ⇌ coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Biopolymers 1977, 16, 601-622. 41. Shah, N. K.; Ramshaw, J. A. M.; Kirkpatrick, A.; Shah, C.; Brodsky, B., A host−guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Biochemistry 1996, 35, 10262-10268. Chapter 3 1. Meng, F.; Kurgan, L., Computational prediction of protein secondary structure from sequence. Curr. Protoc. Protein. Sci. 2016, 86, 1-10. 2. Baldwin, R. L.; Rose, G. D., Is protein folding hierarchic? I. Local structure and peptide folding. Trends. Biochem. Sci. 1999, 24, 26-33. 3. Baldwin, R. L.; Rose, G. D., Is protein folding hierarchic? II. Folding intermediates and transition states. Trends. Biochem. Sci. 1999, 24, 77-83. 4. Kuo, H.-T.; Fang, C.-J.; Tsai, H.-Y.; Yang, M.-F.; Chang, H.-C.; Liu, S.-L.; Kuo, L.-H.; Wang, W.-R.; Yang, P.-A.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P., Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 2013, 52, 9212-9222. 5. Dill, K. A., Dominant forces in protein folding. Biochemistry 1990, 29, 7133-7155. 6. Chou, P. Y.; Fasman, G. D., Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 1974, 13, 211-222. 7. Jiang, B.; Guo, T.; Peng, L.-W.; Sun, Z.-R., Folding type-specific secondary structure propensities of amino acids, derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. Biopolymers 1998, 45, 35-49. 8. Fooks, H. M.; Martin, A. C. R.; Woolfson, D. N.; Sessions, R. B.; Hutchinson, E. G., Amino acid pairing preferences in parallel β-sheets in proteins. J. Mol. Biol. 2006, 356, 32-44. 9. Merkel, J. S.; Sturtevant, J. M.; Regan, L., Sidechain interactions in parallel b sheets: The energetics of cross-strand pairings. Structure 1999, 7, 1333-1343. 10. Fisk, J. D.; Schmitt, M. A.; Gellman, S. H., Thermodynamic analysis of autonomous parallel β-sheet formation in water. J. Am. Chem. Soc. 2006, 128, 7148-7149. 11. Freire, F.; Fisk, J. D.; Peoples, A. J.; Ivancic, M.; Guzei, I. A.; Gellman, S. H., Diacid linkers that promote parallel β-sheet secondary structure in water. J. Am. Chem. Soc. 2008, 130, 7839-7841. 12. Chothia, C., Conformation of twisted β-pleated sheets in proteins. J. Mol. Biol. 1973, 75, 295-302. 13. Benzinger, T. L. S.; Gregory, D. M.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Botto, R. E.; Meredith, S. C., Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 13407-13412. 14. Antzutkin, O. N.; Balbach, J. J.; Leapman, R. D.; Rizzo, N. W.; Reed, J.; Tycko, R., Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 13045-13050. 15. Schladitz, C.; Vieira, E. P.; Hermel, H.; Möhwald, H., Amyloid–β-sheet formation at the air-water interface. Biophys. J. 1999, 77, 3305-3310. 16. Street, A. G.; Mayo, S. L., Intrinsic β-sheet propensities result from van der Waals interactions between side chains and the local backbone. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9074-9076. 17. Haque, T. S.; Gellman, S. H., Insights on β-Hairpin Stability in Aqueous Solution from Peptides with Enforced Type I‘ and Type II‘ β-Turns. J. Am. Chem. Soc. 1997, 119, 2303-2304. 18. Stanger, H. E.; Gellman, S. H., Rules for Antiparallel β-Sheet Design: d-Pro-Gly Is Superior to l-Asn-Gly for β-Hairpin Nucleation. J. Am. Chem. Soc. 1998, 120, 4236-4237. 19. Fisk, J. D.; Powell, D. R.; Gellman, S. H., Control of hairpin formation via proline configuration in parallel β-sheet model systems. J. Am. Chem. Soc. 2000, 122, 5443-5447. 20. Yang, A.-S.; Honig, B., Free energy determinants of secondary structure formation: II. Antiparallel β-sheets. J. Mol. Biol. 1995, 252, 366-376. 21. Nowick, J. S.; Insaf, S., The propensities of amino acids to form parallel β-sheets. J. Am. Chem. Soc. 1997, 119, 10903-10908. 22. Chitnumsub, P.; Fiori, W. R.; Lashuel, H. A.; Diaz, H.; Kelly, J. W., The nucleation of monomeric parallel -sheet-like structures and their self-assembly in aqueous solution. Bioorg. Med. Chem. 1999, 7, 39-59. 23. Freire, F.; Gellman, S. H., Macrocyclic design strategies for small, stable parallel β-sheet scaffolds. J. Am. Chem. Soc. 2009, 131, 7970-7972. 24. Pohorille, A.; Pratt, L. R., Is Water the Universal Solvent for Life? Origins. Life. Evol. B. 2012, 42, 405-409. 25. Diaz, H.; Kelly, J. W., The synthesis of dibenzofuran based diacids and amino acids designed to nucleate parallel and antiparallel β-sheet formation. Tetrahedron Lett. 1991, 32, 5725-5728. 26. Horovitz, A., Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold. Des. 1996, 1, 121-126. 27. Wilson, K. R.; Sedberry, S.; Pescatore, R.; Vinton, D.; Love, B.; Ballard, S.; Wham, B. C.; Hutchison, S. K.; Williamson, E. J., Microwave-assisted cleavage of Alloc and Allyl Ester protecting groups in solid phase peptide synthesis. J. Pept. Sci. 2016, 22, 622-627. 28. Fields, G. B.; Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein. Res. 1990, 35, 161-214. 29. Bax, A.; Davis, D. G., MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 1985, 65, 355-360. 30. Aue, W. P.; Bartholdi, E.; Ernst, R. R., Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 1976, 64, 2229-2246. 31. Bothner, A. A.; Stephens, R. L.; Lee, J.; Warren, C. D.; Jeanloz, R. W., Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984, 106, 811-813. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77168 | - |
| dc.description.abstract | 膠原蛋白支撐身體結構。 序列主要由Gly-Xaa-Yaa重複單位組成。 帶電荷胺基酸比預期中還要更頻繁地出現於膠原蛋白序列之中。 顯示帶電荷胺基酸對膠原蛋白的重要性。 膠原蛋白三股螺旋的設計是基於ABC形式的異元三聚體, 藉此可避免其他不必要的作用力干擾。 利用圓二色光譜儀來測量膠原蛋白三股螺旋的熱變性與熱重組過程, 並從中得到的熱變性數據推導出熱力學參數, 再利用雙突變循環分析方法探討同一條鏈上的離子的作用力。 實驗結果顯示在Y位置的Glu-Lys和Glu-Arg離子對有作用力。 Glu-Lys和Glu-Arg在Y位置上有比在X位置上更多的作用力。 這些結果告訴我們離子對對膠原蛋白三股螺旋的影響。
平行β-sheet 是蛋白質主要的二級結構並常見於阿茲海默症患者腦內。帶相反電荷的胺基酸常出現在平行β-sheet中, 顯示帶電荷胺基酸對平行β-sheet的重要性。不同於非平行β-sheet, 平行beta-sheet需要合成C/N端linkers以連結住兩段beta-strands。在成功合成C端和N端linkers 後即可開始beta-strands的合成。 平行β-sheet合成後是以2D NMR並取得TOCSY, DQF-COSY,和 ROESY圖譜。 | zh_TW |
| dc.description.abstract | Collagen is the substance that holds the whole body together. Collagen consists of the repeating Xaa-Yaa-glycine sequence. Collagen contains more charged residues than expected. Therefore, investigating the effect of the charged residues on collagen triple helix stability should unravel the origin of the stability of collagen. The collagen triple helices were designed based on an ABC-type heterotrimer collagen. All peptides were synthesized by Fmoc-based solid phase peptide synthesis. After purification, thermal denaturation was monitored by circular dichroism spectroscopy. The thermal denaturation data was used to derive the melting temperature and unfolding free energy of the collagen triple helices. Double mutant cycle was used to determine the intrachain interaction energies. Stabilizing interaction in the collagen triple helix was observed for pairs Glu-Lys between two adjacent Y positions. Destabilization was apparent for pairs Glu-Lys, Glu-Arg, and Asp-Lys between two adjacent X positions. In general, incorporating ion pairs Glu-Lys at the adjacent Y positions was more stabilizing compared to same ion pairs at the adjacent X positions. The results offered insights for the effect of intrachain ion pairing interactions on collagen triple helix stability.
β-Sheet is one of the major secondary structures in proteins. All peptides were synthesized using Fmoc-base solid phase peptide synthesis. The linkers were synthesized using solution phase organic synthesis. The experimental pseudopeptide contained two parallel acetyl capped strands connected by a diamine linker at the C-termini. The fully folded reference pseudopeptide contained two parallel strands connected by a diamine linker and diacid linker at the C-termini and the N-termini, respectively. The fully unfolded reference peptide consists of the acetyl capped single strands without any linker on either end. The pseudopeptides and peptides were analyzed using 2D NMR (TOCSY, COSY, and ROESY). The experimental pseudopeptides P1QLysGlu, P1QLysAla, and P1QAlaAla were synthesized, purified, and 2D NMR spectra were acquired. The fully folded reference pseudopeptides P1QFLysGlu, P1QFLysAla, P1QFAlaGlu, and P1QFAlaAla were synthesized, purified, and 2D NMR spectra were acquired. Fully unfolded reference peptides P1Q1Lys and P1Q2Glu were synthesized, purified, and 2D NMR spectra were acquired. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:13Z (GMT). No. of bitstreams: 1 ntu-108-R06223215-1.pdf: 6521447 bytes, checksum: aa16d352ab215b7852b1b7098c39b642 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table of Content
謝誌 i 中文摘要 iv Abstract v List of Figures x List of Tables xvi List of Schemes xvii Abbreviations xviii Chapter 1 1 Introduction 1 1-1. Proteins 2 1-2. The Hierarchy of Protein Structure 3 Primary structure 3 Secondary structure 3 Tertiary Structure. 6 Quaternary structure 7 1-3. The Driving Forces of Protein Folding 7 Electrostatic Interactions 7 Hydrogen Bonding 8 Hydrophobic Effect 8 Van der Waals Interactions 9 1-4. Collagen 9 1-5. Beta-Sheets 10 1-6. Thesis Overview 13 1-7. Reference 14 Chapter 2 18 Effect of Intrachain Ion Pairing Interactions between Oppositely Charged residues on Collagen Triple Helix Stability 18 2-1. Introduction 19 Structure of Collagen Triple Helices 19 Stability of Collagen Triple Helices 20 Electrostatic Interactions in Collagen Triple Helices 22 Design for ABC-Type Heterotrimeric Collagen Triple Helices 26 Hysteresis of Collagen Folding 30 2-2. Results and Discussion 31 Peptide Design 31 Peptide Synthesis 35 Initial Assessment of Different Combinations 35 Thermal Denaturation with Full Thermal Equilibration 45 Double Mutant Cycle Analysis 57 2-3. Conclusion 60 2-4. Future aspect 61 2-5. Acknowledgements 61 2-6. Experimental Section 62 General Materials and Methods 62 Peptide Synthesis 63 UV-vis Spectroscopy (UV-vis) 72 Circular Dichroism Spectroscopy (CD) 72 Double Mutant Cycle Analysis 75 2.7 References 76 Chapter 3 81 Effect of Oppositely Charged Residues on the Stability of Parallel β-Sheet 81 3.1. Introduction 82 β-Sheets 82 Model Systems for Parallel β-Sheets 84 3.2. Results and Discussion 87 Design 87 Synthesis 91 2D NMR Spectroscopy 96 3-2. Conclusion 97 3-3. Future Aspect 98 3-4. Acknowledgements 98 3-5. Experimental Section 99 General Materials and Methods 99 tert-Butyl-2-amino-2-methylpropylcarbamate (H-Dadme-Boc) (2) 101 Cbz-D-Pro-Dadme-Boc (3) 101 H-D-Pro-Dadme-Boc (4) 102 Alloc-Glu(OtBu)-OH 103 Alloc-Glu(OtBu)-D-Pro-Dadme-Boc (5) 103 Alloc-Glu-D-Pro-Dadme-Fmoc (1) 104 3-(2-(Trimethylsilyl)ethoxy)carbonylpropanoic acid (6) 105 Peptide Synthesis 106 3-6 . Reference 119 Appendix 122 | - |
| dc.language.iso | en | - |
| dc.subject | 有機合成 | zh_TW |
| dc.subject | 帶電離子對 | zh_TW |
| dc.subject | 膠原蛋白三股螺旋 | zh_TW |
| dc.subject | 平行β-sheet | zh_TW |
| dc.subject | 雙突變循環 | zh_TW |
| dc.subject | 熱變性實驗 | zh_TW |
| dc.subject | C-terminal/N-terminal linkers | en |
| dc.subject | collagen triple helix | en |
| dc.subject | charged residues | en |
| dc.subject | ion pairing interaction | en |
| dc.subject | thermal denaturation | en |
| dc.subject | double mutant cycle | en |
| dc.subject | parallel β-sheets | en |
| dc.title | 帶負電荷(i)與正電荷(i+3)的胺基酸鏈內離子對作用力對膠原蛋白穩定度的影響 | zh_TW |
| dc.title | Effect of Intrachain Ion Pairing Interactions between Negatively Charged (i) and Positively Charged (i+3) residues on Collagen Triple Helix Stability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃人則;何佳安 | zh_TW |
| dc.contributor.oralexamcommittee | Joseph Jen-Tse Huang;Ja-An Annie Ho | en |
| dc.subject.keyword | 膠原蛋白三股螺旋,帶電離子對,熱變性實驗,雙突變循環,平行β-sheet,有機合成, | zh_TW |
| dc.subject.keyword | collagen triple helix,charged residues,ion pairing interaction,thermal denaturation,double mutant cycle,parallel β-sheets,C-terminal/N-terminal linkers, | en |
| dc.relation.page | 135 | - |
| dc.identifier.doi | 10.6342/NTU201904148 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-09-25 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
