請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77144
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林啟萬(Chii-Wann LIN),歐赫里昂 布雍(Aurelien BRUYANT) | |
dc.contributor.author | Hui-Yun LO | en |
dc.contributor.author | 羅慧芸 | zh_TW |
dc.date.accessioned | 2021-07-10T21:48:19Z | - |
dc.date.available | 2021-07-10T21:48:19Z | - |
dc.date.copyright | 2020-01-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-15 | |
dc.identifier.citation | [1] Kabashin, A. V., Patskovsky, S., & Grigorenko, A. N. (2009). Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Optics Express, 17(23), 21191-21204.
[2] Melendez, J., Carr, R., Bartholomew, D. U., Kukanskis, K., Elkind, J., Yee, S., ... & Woodbury, R. (1996). A commercial solution for surface plasmon sensing. Sensors and Actuators B: Chemical, 35(1-3), 212-216. [3] Zeng, S., Yu, X., Law, W. C., Zhang, Y., Hu, R., Dinh, X. Q., ... & Yong, K. T. (2013). Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B: Chemical, 176, 1128-1133. [4] Nelson, S. G., Johnston, K. S., & Yee, S. S. (1996). High sensitivity surface plasmon resonace sensor based on phase detection. Sensors and actuators B: Chemical, 35(1-3), 187-191. [5] Johnston, K. S., Karlsen, S. R., Jung, C. C., & Yee, S. S. (1995). New analytical technique for characterization of thin films using surface plasmon resonance. Materials chemistry and physics, 42(4), 242-246. [6] Orfanidis, S. J. (2002). Electromagnetic waves and antennas. [7] Stenberg, E., Persson, B., Roos, H., & Urbaniczky, C. (1991). Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of colloid and interface science, 143(2), 513-526. [8] Yih, J. N., Chien, F. C., Lin, C. Y., Yau, H. F., & Chen, S. J. (2005). Angular-interrogation attenuated total reflection metrology system for plasmonic sensors. Applied optics, 44(29), 6155-6162. [9] Zeng, Y., Zhou, J., Xiao, X., Wang, L., Qu, J., Li, X., ... & Shao, Y. (2019). A Speckle-Free Angular Interrogation SPR Imaging Sensor Based on Galvanometer Scan and Laser Excitation. Plasmonics, 1-8. [10] Liu, L., Ma, S., Ji, Y., Chong, X., Liu, Z., He, Y., & Guo, J. (2011). A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor. Review of Scientific Instruments, 82(2), 023109. [11] Liedberg, B., Nylander, C., & Lundström, I. (1995). Biosensing with surface plasmon resonance—how it all started. Biosensors and Bioelectronics, 10(8), i-ix. [12] Kashif, M., Bakar, A. A. A., Arsad, N., & Shaari, S. (2014). Development of phase detection schemes based on surface plasmon resonance using interferometry. Sensors, 14(9), 15914-15938. [13] Huang, Y. H., Ho, H. P., Wu, S. Y., & Kong, S. K. (2012). Detecting phase shifts in surface plasmon resonance: a review. Advances in Optical Technologies, 2012. [14] Nelson, S. G., Johnston, K. S., & Yee, S. S. (1996). High sensitivity surface plasmon resonace sensor based on phase detection. Sensors and actuators B: Chemical, 35(1-3), 187-191. [15] Wu, C. M., & Pao, M. C. (2004). Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection. Optics Express, 12(15), 3509-3514. [16] Yuan, W., Ho, H. P., Wong, C. L., Kong, S. K., & Lin, C. (2006). Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. IEEE Sensors Journal, 7(1), 70-73. [17] Peng, H. J., Wong, S. P., Lai, Y. W., Liu, X. H., Ho, H. P., & Zhao, S. (2003). Simplified system based on photoelastic modulation technique for low-level birefringence measurement. Review of scientific instruments, 74(11), 4745-4749. [18] Su, Y. D., Chen, S. J., & Yeh, T. L. (2005). Common-path phase-shift interferometry surface plasmon resonance imaging system. Optics letters, 30(12), 1488-1490. [19] Patskovsky, S., Jacquemart, R., Meunier, M., De Crescenzo, G., & Kabashin, A. V. (2008). Phase-sensitive spatially-modulated surface plasmon resonance polarimetry for detection of biomolecular interactions. Sensors and Actuators B: Chemical, 133(2), 628-631. [20] Tomizawa, H., Dewa, H., Taniuchi, T., Mizuno, A., & Hanaki, H. (2008). Review of advanced laser technologies for photocathode high-brightness guns. Proceedings of LINAC08, Victoria, BC, Canada, 1090. [21] Wang Zu.Yi. (2018). Birefringent Crystal Based Phase-sensitive Imaging Surface Plasmon Resonance. Graduate Institute of Biomedical Engineering and in College of Medicine and College of Engineering, National Taiwan University. [22] DeShazer, L. G. (2002, January). Improved midinfrared polarizers using yttrium vanadate. In Polarization Analysis and Measurement IV (Vol. 4481, pp. 10-16). International Society for Optics and Photonics. [23] Zhou, C., Jin, W., Zhang, Y., Yang, M., Xiang, L., Wu, Z., ... & Mu, Y. (2013). An angle-scanning surface plasmon resonance imaging device for detection of mismatched bases in caspase-3 DNA. Analytical Methods, 5(9), 2369-2373. [24] Kabashin, A. V., & Nikitin, P. I. (1998). Surface plasmon resonance interferometer for bio-and chemical-sensors. Optics communications, 150(1-6), 5-8. [25] Dandridge, A., & Goldberg, L. (1982). Current-induced frequency modulation in diode lasers. Electronics Letters, 18(7), 302-304. [26] Kersey, A. D., Jackson, D. A., & Corke, M. (1983). Demodulation scheme fibre interferometric sensors employing laser frequency switching. Electronics Letters, 19(3), 102-103. [27] Jackson, D. A., Priest, R., Dandridge, A., & Tveten, A. B. (1980). Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Applied Optics, 19(17), 2926-2929. [28] Webb, D. J., Taylor, R. M., Jones, J. D. C., & Jackson, D. A. (1988). Interferometric optical path difference measurement using sinusoidal frequency modulation of a diode laser. Optics communications, 66(5-6), 245-248. [29] Born, M., & Wolf, E. (1980). Principles of Optics, 6-th ed. [30] Vaillant, J., & Bruyant, A. (2017). An unbalanced interferometer insensitive to wavelength drift. Sensors and Actuators A: Physical, 268, 188-192. [31] Instruments, Z. (2016). Principles of lock-in detection and the state of the art. CH-8005 Zurich, Switzerland, Accessed. [32] Bruyant, A., Vaillant, J., Wu, T. H., Zhu, Y., Huang, Y., & Al Mohtar, A. (2017). Interferometry using generalized lock-in amplifier (G-LIA): a versatile approach for phase-sensitive sensing and imaging. Optical Interferometry, 211-231. [33] Owega, S., & Poitras, D. (2007). Local similarity matching algorithm for determining SPR angle in surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 123(1), 35-41. [34] Zhan, S., Wang, X., & Liu, Y. (2010). Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method. Measurement Science and Technology, 22(2), 025201. [35] Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: a versatile technique for biosensor applications. Sensors, 15(5), 10481-10510. [36] Nenninger, G. G., Piliarik, M., & Homola, J. (2002). Data analysis for optical sensors based on spectroscopy of surface plasmons. Measurement Science and Technology, 13(12), 2038. [37] Hlubina, P., & Ciprian, D. (2017). Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics, 12(4), 1071-1078. [38] Evanko, D. (2004). Hybridization chain reaction. Nature Methods, 1(3), 186. [39] Copyright 2018, Quantum Photovoltaics Group, Imperial College London, cited from:http://docs.solcore.solar/en/master/_modules/solcore/absorption_calculator/tmm_core_vec.htm [40] Yang C.H., Liu H.W., Wu T.H., Chang C.C., Bruyant A., Shen T.L., Lin C.W.,(2019).Metastatic Exosome Sensing via Surface Plasmon Resonance Biosensor Rationalized Aptamer. 13th Asian Conference on Chemical Sensors (ACCS). [41] Wu Tzu Heng. (2017). Smart Plasmonic Lab-on-a-Chip System for DNA based Biosensing. Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University. [42] Jing Guo, P. Donald Keathley, and J. T. Hastings (2008). Dual-mode surface-plasmon-resonance sensors using angular interrogation. Optics letters, 33(5), 512-514. [43] Zekriti, M., Nesterenko, D. V., & Sekkat, Z. (2015). Long-range surface plasmons supported by a bilayer metallic structure for sensing applications. Applied optics, 54(8), 2151-2157. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77144 | - |
dc.description.abstract | 在生物傳感器中,相位干涉式表面電漿子共振的成像傳感器因具備著優異的靈敏度廣泛應用於生物分子之檢測。然而,其狹窄的線性量測範圍使可修飾之生物樣品受到了限制。相對於此,基於振幅響應之角度式表面電漿子共振成像感測器提供了較為寬闊的線性區域。從眾多文獻探討後發現,基於相位干涉式響應之角度式表面電漿子共振成像感測器至今仍少有被提出。
本論文提出一基於角度式之相位干涉式全像感測器,將結合可調變波長之垂直共振腔面設雷射二極體以及雙折射晶體,達到相位調變的功效。在此角度式之相位干涉式儀中,雙折射晶體將誘發P 與S 偏振波產生不同軸向之相位差,並經由極化片將此相位差投影至同一平面使得干涉現象之生成。為了實現角度式檢測,本研究採用一帶有視場角約為0.88 度之柱狀凸透鏡,並透過影像感應器擷取出帶有角度資訊之干涉影像。基於電流調變驅動雷射以建立帶有特定相位調變深度為3.832 弧度之正弦相位調變器,本研究可根據團隊先前已獲有專利之泛用式鎖相放大器從此系統中擷取出振幅和相位資訊,並透過一系列演算法取得角度偏移之資訊。 為了驗證本研究所提出系統架構之可行性,我們採用四層膜之晶片模型放置於系統中進行檢測,並將雜交鏈反應施行於本實驗室另一台相位式全像感測器中作為探討。透過將菲涅耳理論應用於擬和模型與實驗結果進行分析後,本研究根據雜交鏈反應結果在相位式全像感測器再一次呈現出相位檢測上受限於狹窄之線性範圍而難以衍伸之偵測極限。此外,本研究於系統上初步驗證出角度式系統之靈敏度雖會受到不同之光源波長以及粘附材料影響表現性,然而基於同一光源與材料下,不同之蒸鍍金屬厚度卻能在角度響應於折射率之關係中呈現極為線性與穩定之現象,此特性大大克服了相位全像式感測器之檢測限制。 | zh_TW |
dc.description.abstract | Biosensors based on imaging Surface Plasmon Resonance (iSPR) with a phase-sensitive detection system have been widely applied in the detection of biomolecules due to their superior sensitivity. However, its narrow linear detecting range limits the modifying kinds of biological samples. In contrast, the angle interrogation iSPR sensors based on amplitude response have demonstrated a relatively wide linear range. From the discussion of literatures, it has been found that that an angle interrogation iSPR sensor based on phase response has not been proposed.
Based on this, an angle-based phase sensitive holographic SPR sensor is proposed. Within this system, a wavelength-tunable Vertical Cavity Surface Emitting Laser (VCSEL) diode and a birefringent crystal are able to achieve a phase modulation on an angle-based phase sensitive system. On the basis of the current modulation, the laser diode aims to establish a simusoidal phase modulation with a critical phase modulation depth of 3.832 radians, which is a key point applied in a patented generalized Lock-in Amplifier (GLIA) to demodulate phase and amplitude information from an interferometric signal captured by a polarimetry. In this angle based phase sensitive configuration, a birefringent crystal induces a phase lag between polarized P and S waves in different axial direction. With an analyzer, there is an interference formed due to the projection of these two polarized waves. In order to implement an angle interrogation, a cylindrical convex lens with a field angle of 0.88 degrees is utilized. Eventually, the interferometric signal with angle information can be recorded by a Charge-Coupled device (CCD) camera. In order to verify the feasibility of this proposed system, a four-layer film model is used in the system. Furthermore, a hybridization chain reaction is implemented in on the previous phase-sensitive holographic SPR system. Through applying Fresnel theory in a fitting model to fit the simulating with experimental results, there are two interesting points from the analyzed results. The results of the hybridization chain reaction once again protrudes a limited linear range in phase based phase sensitive iSPR system. Furthermore, our proposed system has initially been verified that although the performance of sensitivity will be affected by different wavelengths of optical source and adhesion materials, the different evaporating metal thickness demonstrates a consistent linear relationship between angle response and refractive index. This feature overcomes the limitation of the phase-based phase sensitive SPR sensors. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:48:19Z (GMT). No. of bitstreams: 1 ntu-109-R06548027-1.pdf: 5125266 bytes, checksum: 9039bd44aaca068e6e02a7ebf6b779ec (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Table of content
口試委員審定書 II Acknowledgement III 摘要 IV Abstract V Chapter I. General introduction 1 Section 1-1. Background 1 Section 1-2. Chapter overview 2 Chapter II. Literature review 4 Section 2-1. Fundamental SPR 4 Section 2-2-1. Principle of SPR 4 Section 2-1-2.Theoretical modeling of SPR 5 Section 2-2. SPR Instrumentation 9 Section 2-2-1. Comparison of the SPR system 9 Section 2-2-2. SPR based on interferometry configuration 11 Section 2-2-3. Angle response SPR 17 Section 2-2-4. Imaging SPR 20 Section 2-2-5. Optical source stabilization 20 Section 2-3. Signal processing algorithm 22 Section 2-3-1. Lock-in Amplification 22 Section 2-3-2. Evaluation of angle response 25 Section 2-4. Hybridization Chain Reaction (HCR) 26 Chapter III. Materials and Methodologies 28 Section 3-1. Microfluidic fabrication 28 Section 3-2. Optical configuration 31 Section 3-2-1. Optical configuration 31 Section 3-2-2. Determination of optical parameters 37 Section 3-3. Data processing algorithm 39 Section 3-3-1. Signal processing 40 Section 3-3-2. Post-data analysis 48 Section 3-4. Protocol for HCR 49 Chapter IV. Results and discussion 50 Section 4-1. Optical system characterization 50 Section 4-2. Evaluation of angle response 55 Section 4-3. Experimental result of HCR 58 Chapter V. General conclusion and future perspectives 60 Reference 62 Appendix 65 Section A1. Matlab code for simulation of SPR 65 Section A2. Python code for angle response 68 | |
dc.language.iso | en | |
dc.title | 基於角度式檢測之干涉式相位表面電漿子共振感測器 | zh_TW |
dc.title | A Novel Angle Interrogation based Interferometric Phase Sensitive Surface Plasmon Resonance Biosensor | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林致廷,朱里昂 波斯特(Julien PROUST) | |
dc.subject.keyword | 角度式檢測,相位式SPR,VCSEL 二極體,影像式SPR,雙折射晶體,泛用式鎖相放大器, | zh_TW |
dc.subject.keyword | Angular interrogation,Phase SPR,VCSEL diode,Imaging SPR,Birefringent crystal,GLIA, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU202000109 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-01-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-R06548027-1.pdf 目前未授權公開取用 | 5.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。