Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林世明(Shiming Lin)
dc.contributor.authorRu-Yin Yangen
dc.contributor.author楊茹茵zh_TW
dc.date.accessioned2021-07-10T21:47:19Z-
dc.date.available2021-07-10T21:47:19Z-
dc.date.copyright2020-03-13
dc.date.issued2020
dc.date.submitted2020-02-12
dc.identifier.citation1. MOWF. Statistics on the cause of death in Taiwan in 2018. 2019; Available from: https://www.mohw.gov.tw/cp-16-48057-1.html.
2. Wang, H., et al., Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. The lancet, 2016. 388(10053): p. 1459-1544.
3. Orgnaization, W.H. The top 10 causes of death. 2018; Available from: https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death.
4. Heidenreich, P.A., et al., Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation, 2011. 123(8): p. 933-944.
5. Kannel, W.B., Blood pressure as a cardiovascular risk factor: prevention and treatment. Jama, 1996. 275(20): p. 1571-1576.
6. Mensah, G.A., et al., Mortality from cardiovascular diseases in sub-Saharan Africa, 1990-2013: a systematic analysis of data from the Global Burden of Disease Study 2013. Cardiovascular journal of Africa, 2015. 26(2 H3Africa Suppl): p. S6.
7. Mendis, S., et al., Global atlas on cardiovascular disease prevention and control. 2011: Geneva: World Health Organization.
8. Benjamin, E.J., et al., Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation, 2018. 137(12): p. e67.
9. Orgnaization, W.H. About cardiovascular diseases. Available from: https://www.who.int/cardiovascular_diseases/about_cvd/en/.
10. Wilmot, K.A., et al., Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation, 2015. 132(11): p. 997-1002.
11. Nichols, M., et al., Cardiovascular disease in Europe 2014: epidemiological update. European heart journal, 2014. 35(42): p. 2950-2959.
12. Bundy, J.D., et al., Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA cardiology, 2017. 2(7): p. 775-781.
13. Chaurasia, V. and S. Pal, Early prediction of heart diseases using data mining techniques. Caribbean Journal of Science and Technology, 2013. 1: p. 208-217.
14. Mallika, V., B. Goswami, and M. Rajappa, Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology, 2007. 58(5): p. 513-522.
15. Giana Angelo, P.D., L.P. Institute, and O.S. University. Atherosclerosis. 2015; Available from: https://lpi.oregonstate.edu/mic/health-disease/atherosclerosis.
16. Association, A.H. Atherosclerosis. 2017; Available from: https://www.heart.org/en/health-topics/cholesterol/about-cholesterol/atherosclerosis.
17. Boyette, L.C. and B. Manna, Physiology, Myocardial Oxygen Demand, in StatPearls [Internet]. 2019, StatPearls Publishing.
18. National Heart, L., and Blood Institute (NHLBI). Atherosclerosis diagram. 2008; Available from: https://commons.wikimedia.org/wiki/File:Atherosclerosis_diagram.png.
19. Katan, M. and A. Luft. Global burden of stroke. in Seminars in neurology. 2018. Thieme Medical Publishers.
20. Gomes, J. and A.M. Wachsman, Types of strokes, in Handbook of clinical nutrition and stroke. 2013, Springer. p. 15-31.
21. Roger, V., et al., American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation, 2012. 125(1): p. 188-197.
22. Torbey, M.T. and A. Bhardwaj, Cerebral blood flow physiology and monitoring, in Critical care neurology and neurosurgery. 2004, Springer. p. 23-35.
23. Marnane, M., et al., Stroke subtype classification to mechanism-specific and undetermined categories by TOAST, ASCO, and causative classification system: direct comparison in the North Dublin population stroke study. Stroke, 2010. 41(8): p. 1579-1586.
24. Dupont, S.A., et al. Aneurysmal subarachnoid hemorrhage: an overview for the practicing neurologist. in Seminars in neurology. 2010. © Thieme Medical Publishers.
25. Orgnaization, W.H. Cardiovascular Diseases. Available from: https://www.who.int/health-topics/cardiovascular-diseases/.
26. Falk, E., Coronary thrombosis: pathogenesis and clinical manifestations. The American journal of cardiology, 1991. 68(7): p. B28-B35.
27. Mnatzaganian, G., et al., Sex differences in in-hospital mortality following a first acute myocardial infarction: symptomatology, delayed presentation, and hospital setting. BMC cardiovascular disorders, 2016. 16(1): p. 109.
28. Molarius, A. and S. Janson, Self-rated health, chronic diseases, and symptoms among middle-aged and elderly men and women. Journal of clinical epidemiology, 2002. 55(4): p. 364-370.
29. Čulić, V., et al., Symptom presentation of acute myocardial infarction: influence of sex, age, and risk factors. American heart journal, 2002. 144(6): p. 1012-1017.
30. Herlitz, J., et al., Characteristics and outcome among women and men transported by ambulance due to symptoms arousing suspicion of acute coronary syndrome. Medical Science Monitor, 2002. 8(4): p. CR251-CR256.
31. DeVon, H.A., et al., Symptoms across the continuum of acute coronary syndromes: differences between women and men. American journal of critical care, 2008. 17(1): p. 14-24.
32. Canto, J.G., et al., Prevalence, clinical characteristics, and mortality among patients with myocardial infarction presenting without chest pain. Jama, 2000. 283(24): p. 3223-3229.
33. Milner, K.A., et al., Gender and age differences in chief complaints of acute myocardial infarction (Worcester Heart Attack Study). The American journal of cardiology, 2004. 93(5): p. 606-608.
34. Timpka, S., et al., Muscle strength in adolescent men and risk of cardiovascular disease events and mortality in middle age: a prospective cohort study. BMC medicine, 2014. 12(1): p. 62.
35. Andersen, K., et al., Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study. Bmj, 2015. 351: p. h4543.
36. Ortega, F.B., et al., Muscular strength in male adolescents and premature death: cohort study of one million participants. Bmj, 2012. 345: p. e7279.
37. Triana-Reina, H.R. and R. Ramírez-Vélez, Association of muscle strength with early markers of cardiovascular risk in sedentary adults. Endocrinología y Nutrición (English Edition), 2013. 60(8): p. 433-438.
38. Silventoinen, K., et al., Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: a population-based cohort study of one million Swedish men. International journal of epidemiology, 2008. 38(1): p. 110-118.
39. Tomas, E., et al., Metabolic and hormonal interactions between muscle and adipose tissue. Proceedings of the Nutrition Society, 2004. 63(2): p. 381-385.
40. Ebi-Kryston, K.L., Respiratory symptoms and pulmonary function as predictors of 10-year mortality from respiratory disease, cardiovascular disease, and all causes in the Whitehall Study. Journal of clinical epidemiology, 1988. 41(3): p. 251-260.
41. Frostad, A., et al., Respiratory symptoms as predictors of all‐cause mortality in an urban community: a 30‐year follow‐up. Journal of internal medicine, 2006. 259(5): p. 520-529.
42. Frostad, A., et al., Respiratory symptoms and long-term cardiovascular mortality. Respiratory medicine, 2007. 101(11): p. 2289-2296.
43. Bonow, R.O. and J.E. Udelson, Left ventricular diastolic dysfunction as a cause of congestive heart failure: mechanisms and management. Annals of internal medicine, 1992. 117(6): p. 502-510.
44. Caidahl, K., et al., Dyspnoea of cardiac origin in 67 year old men:(1). Relation to systolic left ventricular function and wall stress. The study of men born in 1913. Heart, 1988. 59(3): p. 319-328.
45. Vasan, R.S., E.J. Benjamin, and D. Levy, Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. Journal of the American College of Cardiology, 1995. 26(7): p. 1565-1574.
46. Diez-Tejedor, E., et al., Classification of the cerebrovascular diseases. Iberoamerican Cerebrovascular diseases Society. Revista de neurologia, 2001. 33(5): p. 455-464.
47. Grolimund, P., et al., Evaluation of cerebrovascular disease by combined extracranial and transcranial Doppler sonography. Experience in 1,039 patients. Stroke, 1987. 18(6): p. 1018-1024.
48. Medicine, L.U.C.S.S.o. Internal Carotid System. Available from: http://www.meddean.luc.edu/lumen/MedEd/Neuro/neurovasc/navigation/ica.htm.
49. Klijn, C.J., et al., Symptomatic carotid artery occlusion: a reappraisal of hemodynamic factors. Stroke, 1997. 28(10): p. 2084-2093.
50. Weimar, C., et al., Neurologic worsening during the acute phase of ischemic stroke. Archives of neurology, 2005. 62(3): p. 393-397.
51. Thanvi, B. and T. Robinson, Complete occlusion of extracranial internal carotid artery: clinical features, pathophysiology, diagnosis and management. Postgraduate medical journal, 2007. 83(976): p. 95-99.
52. Caplan, L., Posterior circulation ischemia: then, now, and tomorrow: the Thomas Willis lecture-2000. Stroke, 2000. 31(8): p. 2011-2023.
53. Hoya, K., et al., Common carotid artery stenosis and amaurosis fugax. Journal of Stroke and Cerebrovascular Diseases, 2008. 17(1): p. 1-4.
54. Krayenbühl, H., P. Huber, and M.G. Yaşargil, Cerebral angiography. 1982: thieme.
55. Lewandowski, C.A., C.P. Rao, and B. Silver, Transient ischemic attack: definitions and clinical presentations. Annals of emergency medicine, 2008. 52(2): p. S7-S16.
56. Menshawi, K., J.P. Mohr, and J. Gutierrez, A functional perspective on the embryology and anatomy of the cerebral blood supply. Journal of stroke, 2015. 17(2): p. 144.
57. Kasper, D., et al., Harrison's principles of internal medicine. 2015: McGraw-Hill Professional Publishing.
58. Israeli-Korn, S.D., et al., Ischemic stroke due to acute basilar artery occlusion: proportion and outcomes. IMAJ-Israel Medical Association Journal, 2010. 12(11): p. 671.
59. Ferbert, A., H. Brückmann, and R. Drummen, Clinical features of proven basilar artery occlusion. Stroke, 1990. 21(8): p. 1135-1142.
60. Association, A.H. What is High Blood Pressure? 2016; Available from: https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/what-is-high-blood-pressure.
61. Klabunde, R., Cardiovascular physiology concepts. 2011: Lippincott Williams & Wilkins.
62. Reboussin, D.M., et al., Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 2018. 71(19): p. 2176-2198.
63. Lewington, S., Prospective studies collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002. 360: p. 1903-1913.
64. Parati, G., et al., European Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. Journal of hypertension, 2008. 26(8): p. 1505-1526.
65. Geddes, L.A., The direct and indirect measurement of blood pressure. 1970: Year Book Medical Publishers.
66. Marino, P.L. and K.M. Sutin, The ICU book. Vol. 2. 1998: Williams & Wilkins Baltimore:.
67. O'Brien, E., et al., Blood pressure measuring devices: recommendations of the European Society of Hypertension. Bmj, 2001. 322(7285): p. 531-536.
68. Pickering, T.G., et al., Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension, 2005. 45(1): p. 146.
69. Jones, D.W., et al., Mercury sphygmomanometers should not be abandoned: an advisory statement from the Council for High Blood Pressure Research, American Heart Association. 2001, Am Heart Assoc.
70. Lilly, L.S., Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty (sixth ed.). 2012: Lippincott Williams & Wilkins. .
71. Lilly, L.S.e., Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty (sixth ed.). 2012: Lippincott Williams & Wilkins. p.80.
72. De Chazal, P., et al., Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering, 2003. 50(6): p. 686-696.
73. Spjkrul. Conduction system. 2011; Available from: https://www.textbookofcardiology.org/wiki/File:Conductionsystem.svg#filehistory.
74. McDonald, D.A., Blood flow in arteries. 1974.
75. Spencer, M.P. and F.C. Greiss, Dynamics of ventricular ejection. Circulation Research, 1962. 10(3): p. 274-279.
76. Moran JF. Pulse. In: Walker HK, H.W., Hurst JW, editors., Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths;. 1990: p. Chapter 17.
77. Gesche, H., et al., Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. European journal of applied physiology, 2012. 112(1): p. 309-315.
78. Greenwald, S., Pulse pressure and arterial elasticity. Qjm, 2002. 95(2): p. 107-112.
79. Geddes, L., et al., Pulse transit time as an indicator of arterial blood pressure. psychophysiology, 1981. 18(1): p. 71-74.
80. A Blood Pressure Monitoring Method for Stroke Management - Scientific Figure on ResearchGate. . 2019; Available from: https://www.researchgate.net/figure/Pulse-transit-time-is-defined-as-the-time-interval-between-the-R-peak-of-ECG-and-the-peak_fig1_265418109.
81. Geddes, L. and S. Whistler, The error in indirect blood pressure measurement with the incorrect size of cuff. American heart journal, 1978. 96(1): p. 4-8.
82. Strand, J.E., Flat biomedical electrode with reuseable lead wire. 1987, Google Patents.
83. R. Pallàs-Areny, J.G.W., Sensors and signal conditioning 2nd ed., ed. J.W. Sons. 2001, New York.
84. Association, A.H. All About Heart Rate (Pulse). Jul 31, 2015; Available from: https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/all-about-heart-rate-pulse.
85. Steinberg, C., et al., Measurements of central blood vessels in infants and children: normal values. Catheterization and cardiovascular diagnosis, 1992. 27(3): p. 197-201.
86. Lakatta, E.G., Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart failure reviews, 2002. 7(1): p. 29-49.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77118-
dc.description.abstract與心血管有關的疾病,如腦血管疾病、心臟病與高血壓是常見的死亡原因。相較於其他病症,心血管疾病較無明顯的病徵,心血管阻塞不易察覺,容易受到忽略而錯過治療時間,若能及早發現異狀可以降低心血管疾病的發生機率。
血壓是評估心血管疾病一項重要的指標。然而,現今被視為黃金標準的水銀血壓計,其量測血壓方式需由他人協助聽診,也容易因為壓脈帶的鬆緊度造成量測誤差,更無法長時間連續監測血壓。
為了開發連續監測血壓之方法,本研究利用壓力感測器與心電圖所測量之訊號,透過撰寫之峰值擷取方法計算心電圖訊號與橈動脈脈波訊號的波峰時間差距來獲得脈波傳導時間,再推算出脈搏波速度,最後將脈搏波速度與水銀血壓計量測之血壓數據進行線性迴歸模型的分析,建立推估血壓的演算法。
未來若能配合合適的機構,開發成穿戴式設備,並透過臨床試驗,收集更多數據分析後,將可以更有效的將此方法運用於血壓量測,達到長期追蹤血壓的功能。
zh_TW
dc.description.abstractCardiovascular-related diseases such as cerebrovascular disease, heart disease, and hypertension are common causes of death. Compared with other diseases, cardiovascular disease has less obvious symptoms, cardiovascular obstruction is imperceptible, and it is easy to be ignored and miss the treatment time. As soon as possible find abnormalities that can reduce the incidence of cardiovascular disease. Blood pressure is an important evaluation indicator of cardiovascular disease. However, the mercury sphygmomanometer, which is now regarded as the gold standard, requires the assistance of auscultation by others. It is also easy to cause measurement errors due to the tightness of the cuff, and it is impossible to continuously monitor blood pressure for a long time.
In order to develop a method for continuous monitoring of blood pressure, this study uses signals measured by force sensor and electrocardiograms and calculates the peak time difference between ECG signal and radial arterial pulse wave signal by the peak detection method written to obtain the pulse wave transit time. Then calculate the pulse wave velocity. The blood pressure data of mercury sphygmomanometer and the pulse wave velocity we obtained were analyzed by a linear regression model to establish an algorithm for estimating blood pressure. In the future, if we can use the right mechanism to develop a wearable device, and collect more data analysis through clinical trials, we will be able to apply this method to blood pressure measurement more effectively and achieve long-term blood pressure tracking.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:47:19Z (GMT). No. of bitstreams: 1
ntu-109-R06458005-1.pdf: 11919224 bytes, checksum: 5c7b057433068dd85dad670471e5d4a2 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
Contents IV
List of Figures VII
List of Tables IX
Chapter PAGE
1. Introduction 1
1.1. Background 1
1.2. Cardiovascular disease and cerebrovascular diseases 3
1.2.1. Heart diseases 3
1.2.2. Stroke 5
1.2.3. Symptoms of cardiovascular diseases 6
1.2.4. Symptoms of cerebrovascular diseases 8
1.2.5. Blood pressure 10
1.2.6. Measuring blood pressure 12
1.3. Electrocardiography(ECG) 13
1.4. Pulse wave transit time(PWTT) 15
1.5. Research motivations and objectives 17
1.6. Thesis organization 19
2. Methodology 20
2.1. ECG modules 20
2.2. Force sensor modules 24
2.3. System integration 28
2.3.1. Force sensor module and ECG module integration 28
2.3.2. Development board 29
2.4. Mercury sphygmomanometers 30
2.5. Experimental setup and procedure 32
2.6. Signal processing 33
2.6.1. Signal acquisition 34
2.6.2. Signal analysis 34
2.6.3. Peak detection 35
2.6.4. Pulse wave transit time calculation 35
2.6.5. Pulse wave velocity estimate 35
2.7. Statistical analysis 36
3. Results 37
3.1. Characterization of study subjects 37
3.2. The obtained signal from PCB 38
3.3. Data recording 39
3.4. Blood pressure measured by mercury sphygmomanometers 40
3.5. Signal processing for the system of force sensor and the ECG 42
3.6. Parameter calculation in the system 44
3.6.1. Heart rate calculation 44
3.6.2. Pulse wave transit time calculation 46
3.6.3. Pulse wave velocity estimate 47
3.7. The linear regression between the pulse wave velocity and blood pressure 49
3.7.1. Pulse wave velocity and systolic blood pressure 49
3.7.2. Pulse wave velocity and diastolic blood pressure 51
3.7.3. Pulse wave velocity and mean arterial pressure 53
4. Discussion 56
4.1. The clinical measurement 56
4.2. Clinical parameters of subjects 56
4.3. Estimation of pulse wave velocity 57
4.4. The linear regression between mercury sphygmomanometers and this
measuring system 58
4.5. Limitation of blood pressure measuring system 58
5. Conclusion and Future Prospect 60
Reference 62
dc.language.isoen
dc.subject血壓量測zh_TW
dc.subject心電圖訊號zh_TW
dc.subject壓力感測器zh_TW
dc.subject峰值擷取方法zh_TW
dc.subject脈波傳導時間zh_TW
dc.subject脈搏波速度zh_TW
dc.subjectECG signalen
dc.subjectblood pressure measurementen
dc.subjectpulse wave velocityen
dc.subjectpulse wave transit timeen
dc.subjectpeak detection methoden
dc.subjectforce sensoren
dc.title一種連續監測動脈壓之方法zh_TW
dc.titleA Method for Continuously Monitoring the Artery Pressureen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee洪錦堂(Jim-Tong Horng),鄧致剛(Petrus Tang),賴信志(Hsin-Chih Lai)
dc.subject.keyword心電圖訊號,壓力感測器,峰值擷取方法,脈波傳導時間,脈搏波速度,血壓量測,zh_TW
dc.subject.keywordECG signal,force sensor,peak detection method,pulse wave transit time,pulse wave velocity,blood pressure measurement,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202000428
dc.rights.note未授權
dc.date.accepted2020-02-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫療器材與醫學影像研究所zh_TW
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
ntu-109-R06458005-1.pdf
  未授權公開取用
11.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved