請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77112完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉如 | |
| dc.contributor.author | Chi-Ting Lai | en |
| dc.contributor.author | 賴琪婷 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:47:06Z | - |
| dc.date.available | 2021-07-10T21:47:06Z | - |
| dc.date.copyright | 2020-03-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-21 | |
| dc.identifier.citation | 1. M. H. Bailey et al., Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173, 371-385 e318 (2018).
2. C. Greenman et al., Patterns of somatic mutation in human cancer genomes. Nature 446, 153-158 (2007). 3. L. Pan et al., Solexa-Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus). PloS one 10, e0124583 (2015). 4. F. Lopez-Rios et al., Comparison of Testing Methods for the Detection of BRAF V600E Mutations in Malignant Melanoma: Pre-Approval Validation Study of the Companion Diagnostic Test for Vemurafenib. PLoS ONE 8, e53733 (2013). 5. Z. Xu et al., Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform. PLoS One 9, e100442 (2014). 6. X. S. Puente et al., Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101-105 (2011). 7. N. Cancer Genome Atlas Research, Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615 (2011). 8. L. Ding et al., Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069-1075 (2008). 9. N. Cancer Genome Atlas Research, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068 (2008). 10. G. Bronte et al., Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer treatment reviews 36, Supplement 3, S21-S29 (2010). 11. G. Bollag et al., Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11, 873-886 (2012). 12. K. T. Flaherty et al., Inhibition of mutated, activated BRAF in metastatic melanoma. The New England journal of medicine 363, 809-819 (2010). 13. M. S. Brose et al., BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62, 6997-7000 (2002). 14. M. M. Goldenberg, Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clinical therapeutics 21, 309-318 (1999). 15. Y. Fang et al., Somatic mutations of the HER2 in metastatic breast cancer. Tumour Biol 35, 11851-11854 (2014). 16. Z. Sun et al., Analysis of different HER-2 mutations in breast cancer progression and drug resistance. J Cell Mol Med 19, 2691-2701 (2015). 17. F. Cappuzzo, L. Bemis, M. Varella-Garcia, HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. The New England journal of medicine 354, 2619-2621 (2006). 18. G. S. Falchook et al., Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment. J Thorac Oncol 8, e19-20 (2013). 19. S. Peters, S. Zimmermann, Targeted therapy in NSCLC driven by HER2 insertions. Transl Lung Cancer Res 3, 84-88 (2014). 20. R. G. Zinner et al., Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer 44, 99-110 (2004). 21. P. Krawczyk et al., Sensitive methods for the detection of an insertion in exon 20 of the HER2 gene in the metastasis of non-small cell lung cancer to the central nervous system. Oncology letters 6, 1063-1067 (2013). 22. M. S. Tsao et al., Erlotinib in lung cancer - molecular and clinical predictors of outcome. The New England journal of medicine 353, 133-144 (2005). 23. T. J. Lynch et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England journal of medicine 350, 2129-2139 (2004). 24. J. G. Paez et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, N.Y.) 304, 1497-1500 (2004). 25. H. A. Yu, W. Pao, Targeted therapies: Afatinib--new therapy option for EGFR-mutant lung cancer. Nature reviews. Clinical oncology 10, 551-552 (2013). 26. S. V. Sharma, D. W. Bell, J. Settleman, D. A. Haber, Epidermal growth factor receptor mutations in lung cancer. Nature reviews. Cancer 7, 169-181 (2007). 27. J. Cadranel, A. M. Ruppert, M. Beau-Faller, M. Wislez, Therapeutic strategy for advanced EGFR mutant non-small-cell lung carcinoma. Crit Rev Oncol Hematol 88, 477-493 (2013). 28. E. Lundberg et al., Defining the transcriptome and proteome in three functionally different human cell lines. Molecular systems biology 6, 450 (2010). 29. B. Zhang et al., Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382-387 (2014). 30. P. Mertins et al., Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62 (2016). 31. R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013. CA: a cancer journal for clinicians 63, 11-30 (2013). 32. A. J. Shih, S. E. Telesco, R. Radhakrishnan, Analysis of Somatic Mutations in Cancer: Molecular Mechanisms of Activation in the ErbB Family of Receptor Tyrosine Kinases. Cancers 3, 1195-1231 (2011). 33. M. D. Siegelin, A. C. Borczuk, Epidermal growth factor receptor mutations in lung adenocarcinoma. Laboratory investigation; a journal of technical methods and pathology 94, 129-137 (2014). 34. P. Giansanti, L. Tsiatsiani, T. Y. Low, A. J. Heck, Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11, 993-1006 (2016). 35. R. Roskoski, Jr., The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79, 34-74 (2014). 36. H. Ji et al., The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer cell 9, 485-495 (2006). 37. J. Y. Yu et al., Clinical outcomes of EGFR-TKI treatment and genetic heterogeneity in lung adenocarcinoma patients with EGFR mutations on exons 19 and 21. Chin J Cancer 35, 30 (2016). 38. M. N. Balak et al., Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 6494-6501 (2006). 39. M. G. Denis, A. Vallee, S. Theoleyre, EGFR T790M resistance mutation in non small-cell lung carcinoma. Clinica chimica acta; international journal of clinical chemistry 444, 81-85 (2015). 40. G. Giaccone, EGFR point mutation confers resistance to gefitinib in a patient with non-small-cell lung cancer. Nature clinical practice. Oncology 2, 296-297 (2005). 41. A. F. Gazdar, Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28 Suppl 1, S24-31 (2009). 42. T. Kaneda et al., Possible differential EGFR-TKI efficacy among exon 19 deletional locations in EGFR-mutant non-small cell lung cancer. Lung cancer 86, 213-218 (2014). 43. A. Marchetti et al., EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 857-865 (2005). 44. H. J. Kim et al., Detection and comparison of peptide nucleic acid-mediated real-time polymerase chain reaction clamping and direct gene sequencing for epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Lung cancer 75, 321-325 (2012). 45. K. Y. Su et al., Implementation and Quality Control of Lung Cancer EGFR Genetic Testing by MALDI-TOF Mass Spectrometry in Taiwan Clinical Practice. Sci Rep 6, 30944 (2016). 46. E. Bonaparte et al., Molecular profiling of lung cancer specimens and liquid biopsies using MALDI-TOF mass spectrometry. Diagn Pathol 13, 4 (2018). 47. F. Pinter et al., Epidermal growth factor receptor (EGFR) high gene copy number and activating mutations in lung adenocarcinomas are not consistently accompanied by positivity for EGFR protein by standard immunohistochemistry. J Mol Diagn 10, 160-168 (2008). 48. G. M. Sheynkman, M. R. Shortreed, B. L. Frey, M. Scalf, L. M. Smith, Large-scale mass spectrometric detection of variant peptides resulting from nonsynonymous nucleotide differences. Journal of proteome research 13, 228-240 (2014). 49. A. I. Nesvizhskii, Proteogenomics: concepts, applications and computational strategies. Nature methods 11, 1114-1125 (2014). 50. J. Armengaud, Proteogenomics and systems biology: quest for the ultimate missing parts. Expert review of proteomics 7, 65-77 (2010). 51. C. Ansong, S. O. Purvine, J. N. Adkins, M. S. Lipton, R. D. Smith, Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Briefings in functional genomics & proteomics 7, 50-62 (2008). 52. P. D. Jagtap et al., Flexible and Accessible Workflows for Improved Proteogenomic Analysis Using the Galaxy Framework. Journal of proteome research 13, 5898-5908 (2014). 53. S. Woo et al., Proteogenomic database construction driven from large scale RNA-seq data. Journal of proteome research 13, 21-28 (2014). 54. S. Woo et al., Proteogenomic strategies for identification of aberrant cancer peptides using large-scale next-generation sequencing data. Proteomics 14, 2719-2730 (2014). 55. G. A. de Souza et al., Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Molecular & cellular proteomics : MCP 10, M110 002527 (2011). 56. M. Helmy, N. Sugiyama, M. Tomita, Y. Ishihama, Onco-proteogenomics: a novel approach to identify cancer-specific mutations combining proteomics and transcriptome deep sequencing. Genome Biology 11, P17 (2010). 57. J. A. Alfaro, A. Sinha, T. Kislinger, P. C. Boutros, Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat Methods 11, 1107-1113 (2014). 58. X. Yang, I. M. Lazar, XMAn: A Homo sapiens Mutated-Peptide Database for the MS Analysis of Cancerous Cell States. Journal of proteome research 13, 5486-5495 (2014). 59. E. S. Boja, H. Rodriguez, Proteogenomic convergence for understanding cancer pathways and networks. Clin Proteomics 11, 22 (2014). 60. J. Armengaud, Proteogenomics and systems biology: quest for the ultimate missing parts. Expert Rev Proteomics 7, 65-77 (2010). 61. S. Faulkner, M. D. Dun, H. Hondermarck, Proteogenomics: emergence and promise. Cellular and molecular life sciences : CMLS 72, 953-957 (2015). 62. S. Gallien et al., Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11, 1709-1723 (2012). 63. N. Rauniyar, Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int J Mol Sci 16, 28566-28581 (2015). 64. G. E. Ronsein et al., Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J Proteomics 113, 388-399 (2015). 65. S. Gallien, B. Domon, Advances in high-resolution quantitative proteomics: implications for clinical applications. Expert Rev Proteomics 12, 489-498 (2015). 66. M. A. Gillette, S. A. Carr, Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10, 28-34 (2013). 67. J. Kamiie et al., Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharmaceutical research 25, 1469-1483 (2008). 68. A. Doerr, Mass spectrometry–based targeted proteomics. Nature methods 10, 23-23 (2012). 69. D. C. Liebler, L. J. Zimmerman, Targeted quantitation of proteins by mass spectrometry. Biochemistry 52, 3797-3806 (2013). 70. J. Martínez-Aguilar, M. P. Molloy, Label-free Selected Reaction Monitoring Enables Multiplexed Quantitation of S100 Protein Isoforms in Cancer Cells. Journal of proteome research 12, 3679-3688 (2013). 71. P. J. Halvey, C. R. Ferrone, D. C. Liebler, GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples. J Proteome Res 11, 3908-3913 (2012). 72. Q. Wang et al., Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci U S A 108, 2444-2449 (2011). 73. P. J. Halvey, C. R. Ferrone, D. C. Liebler, GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples. Journal of proteome research 11, 3908-3913 (2012). 74. A. Lesur et al., Screening protein isoforms predictive for cancer using immunoaffinity capture and fast LC-MS in PRM mode. Proteomics Clin Appl 9, 695-705 (2015). 75. H. Chen et al., Quantitative analysis of wild-type and V600E mutant BRAF proteins in colorectal carcinoma using immunoenrichment and targeted mass spectrometry. Anal Chim Acta 933, 144-155 (2016). 76. H. Wang et al., Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J Transl Med 15, 175 (2017). 77. Y. T. Lu et al., Proteomic profiles of bronchoalveolar lavage fluid from patients with ventilator-associated pneumonia by gel-assisted digestion and 2-D-LC/MS/MS. Proteomics Clin Appl 2, 1208-1222 (2008). 78. A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2, (2011). 79. W. A. Cooper et al., EGFR mutant-specific immunohistochemistry has high specificity and sensitivity for detecting targeted activating EGFR mutations in lung adenocarcinoma. J Clin Pathol 66, 744-748 (2013). 80. Y. Xiong et al., Immunohistochemical detection of mutations in the epidermal growth factor receptor gene in lung adenocarcinomas using mutation-specific antibodies. Diagn Pathol 8, 27 (2013). 81. J. Yu et al., Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin Cancer Res 15, 3023-3028 (2009). 82. Y. Kato et al., Novel epidermal growth factor receptor mutation-specific antibodies for non-small cell lung cancer: immunohistochemistry as a possible screening method for epidermal growth factor receptor mutations. J Thorac Oncol 5, 1551-1558 (2010). 83. Y. Kozu et al., The usefulness of mutation-specific antibodies in detecting epidermal growth factor receptor mutations and in predicting response to tyrosine kinase inhibitor therapy in lung adenocarcinoma. Lung Cancer 73, 45-50 (2011). 84. Z. Chen et al., Diagnostic value of mutation-specific antibodies for immunohistochemical detection of epidermal growth factor receptor mutations in non-small cell lung cancer: a meta-analysis. PLoS One 9, e105940 (2014). 85. C. H. Kim et al., Identification of EGFR Mutations by Immunohistochemistry with EGFR Mutation-Specific Antibodies in Biopsy and Resection Specimens from Pulmonary Adenocarcinoma. Cancer Res Treat 47, 653-660 (2015). 86. N. T. Hitij et al., Immunohistochemistry for EGFR Mutation Detection in Non-Small-Cell Lung Cancer. Clin Lung Cancer 18, e187-e196 (2017). 87. K. Azuma et al., Association of the expression of mutant epidermal growth factor receptor protein as determined with mutation-specific antibodies in non-small cell lung cancer with progression-free survival after gefitinib treatment. J Thorac Oncol 7, 122-127 (2012). 88. C. J. Mageean, J. R. Griffiths, D. L. Smith, M. J. Clague, I. A. Prior, Absolute Quantification of Endogenous Ras Isoform Abundance. PLoS One 10, e0142674 (2015). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77112 | - |
| dc.description.abstract | 亞洲肺腺癌患者具有較高的表皮生長因子受體(EGFR)活化性突變發生率(主要為L858R點突變和19外顯子鹼基缺失),含有此突變基因的肺腺癌患者對於標靶藥物酪胺酸激酶抑制劑具有較佳的藥物反應性。目前基因檢測方法已廣泛使用於鑑定肺腺癌患者EGFR突變以進行標靶藥物治療,然而,肺腺癌患者的藥物治療效果具有差異性;且經治療6到12個月後,患者都對標靶藥物產生抗藥性,其中多數肺腺癌患者已被鑑定出具有EGFR T790M抗藥性突變。為進一步了解基因突變鑑定是否已能因應於標靶藥物抑制EGFR突變蛋白質之效力關係,本研究發展一個以質譜技術平台為基礎之蛋白基因體策略,針對野生型與突變型的EGFR蛋白進行鑑定與定量分析。透過突變蛋白質氨基酸序列之生物資訊分析比對,篩選出相對應之蛋白質水解酶,並結合親和性純化EGFR蛋白質方法,以膠體輔助方式進行多重酵素平行水解作用產生適當的野生型及突變型胜肽,再以液相層析串聯質譜儀結合平行反應監測法進行胜肽分析。
本論文針對EGFR活化性突變,如點突變L858R、G719A、外顯子19鹼基缺失 (E746-A750del)、次要突變T790M、與一無突變位點的野生型序列,設計合成胜肽以應用於後續方法開發。透過資料庫比對胜肽所產生的特定碎片離子並於錯誤發現率小於百分之一條件下,可在具有基因外顯子19鹼基缺失的PC9肺癌細胞中,同時準確鑑定出具有突變胜肽與其相對應之野生型。此外亦可於具有L858R突變的H3255及H1975細胞,及有G719A突變的CL97細胞當中,分別鑑定到L858R突變胜肽。為進一步能定量突變型及野生型EGFR的表現量,我們利用含有同位素標定之合成胜肽分別建置其相對應的標準曲線,進行絕對定量質譜分析。根據各突變蛋白質與其相對應之野生型蛋白質質譜分析結果,其偵測極限值為0.06 到0.34 奈克,可定量極限值為 0.2到1奈克之間。我們將此策略結果應用在非小細胞肺癌的細胞株與人源化腫瘤異種移殖的老鼠腫瘤,突變型與野生型EGFR具有伴隨性異質表現情形。在具有外顯子19鹼基缺失的PC9與HCC827,和帶有L858R突變的H3255細胞,以及具有抗藥性突變的CL68 (外顯子19鹼基缺失/T790M) 和CL97 (G719A/T790M) 細胞中,突變型EGFR皆有高度表現,而野生型EGFR有低表現量。相較於前述細胞株,攜有抗酪胺酸激酶抑制劑T790M突變基因的H1975細胞中,突變型與野生型EGFR蛋白質有相同量但是較低的表現量。在源於PC9及CL68的腫瘤中,亦偵測到具有高度表現的突變型EGFR,同時伴隨存在著極少量的野生型態;其中於帶有CL68腫瘤的個別老鼠當中,突變型EGFR表現量有高度差異 (於1毫克蛋白質中含有27到108皮克突變蛋白質)。比對H3255細胞定量結果,源於H3255的老鼠腫瘤中並未偵測到高度表現的EGFR,且突變型與野生型的蛋白質比例也從細胞中測到3倍降至1.5倍。值得注意的是,源於具有抗藥性H1975的腫瘤中偵測到的野生型EGFR具有高度異質性表現。同時,透過此分析策略可於具有L858R基因突變之肺癌病患血漿中鑑定到無突變位點及L858兩種野生型胜肽,亦顯示出此策略方法可能作為非侵入性檢测EGFR蛋白質的潛力。綜合上述實驗結果,此研究所建立的癌症蛋白基因體策略,可準確於細胞與腫瘤中同時鑑定與定量多種EGFR突變蛋白質之表現,未來可進一步評估EGFR突變蛋白質表現量與酪胺酸激酶抑制劑治療適應性之相關性。 | zh_TW |
| dc.description.abstract | Epithelial growth factor receptor (EGFR) activating mutations have been discovered with high frequency in lung adenocarcinoma patients in East Asia. The lung cancer patients harboring an activating mutation, including L858R and exon19 deletion (E746-A750del, Del-19) in EGFR will be beneficial with responsiveness to EGFR tyrosine kinase inhibitors (TKI). Though EGFR gene test is widely used to select patient, however, the efficacy of TKI varied between TKI-treated patients. Furthermore, all patients develop resistance to TKI within 6 months to one year mainly due to acquired secondary mutation (T790M). To study whether gene test is satisfactory to access the efficacy of TKI targeting on EGFR protein level, we developed a mass spectrometry (MS)-based proteogenomics strategy for confident identification and absolute quantitation of wild-type and mutant EGFR protein. Specifically, the strategy integrated in silico analysis of mutant protein sequences for protease selection, affinity purification of EGFR, parallel enzymatic digestions, and liquid chromatography–parallel reaction monitoring–mass spectrometry (LC-PRM/MS) analysis.
Synthetic peptides designed from EGFR activating mutations, including L858R, G719A and Del-19 and secondary mutation (T790M) as well as a shared peptide from non-mutation region were prepared for methodology development. The E746-A750 peptide and the corresponding wild type (WT) peptide were confidently identified (FDR<1%) in PC9 cell line which bearing Del-19. The L858R was unambiguously identified in H3255 and H1975 cells, and G719A was identified in CL97 cells. The standard curves for each mutant and WT peptide were constructed using isotopic-labeled peptides for quantification of endogenous peptides. For different mutant EGFR proteins and corresponding wild-type, the limit of detection ranges from 0.06 to 0.34 ng and the limit of quantitation is from 0.2 to 1 ng in LC/MS analysis. By using this strategy, our results revealed concomitant and heterogeneous expressions of mutant and wild-type EGFR proteins in NSCLC cell lines and xenograft tumors. The mutant EGFR proteins were highly expressed in PC9 and HCC827 (Del-19), H3255 (L858R), CL68(Del-19/T790M) and CL97 (G719A/T790M), while equal amount of wild-type and mutant EGFR were detected in the resistant H1975 cells (L858R/T790M). In PC9 and CL68 cell line-derived xenograft tumors, mutant EGFR is the primary form accompanied by a trace amount of wild-type EGFR. In addition, the CL68 derived tumors from different mice had different mutant EGFR expression (27 to 108 pg per mg lysate). Interestingly, though EGFR protein has high expression in H3255 cells, its expression is much lower in corresponding xenograft tumors and the ratio of L858R to WT expression decreased from 3-fold in H3255 cell to 1.5-fold in tumors. Notably, EGFR WT has extremely heterogeneous expression in the tumor derived from the TKI resistant H1975 cells. In the plasma, we detected the L858 wild-type peptide from one EGFR-L858R lung adenocarcinoma patient, indicating the potential of our approach for non-invasive detection of EGFR proteins. Our developed oncoproteogenomics strategy can precisely determine the multiple EGFR somatic mutations at protein level in cell lines and tumors. Further study is required to evaluate the association between expression levels of mutant EGFR proteins and the adaption to EGFR-TKIs treatments. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:47:06Z (GMT). No. of bitstreams: 1 ntu-109-D02b48012-1.pdf: 2711242 bytes, checksum: e8199b71c98259618dfdafd76c4f6312 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III List of Figures VII Chapter 1 Introduction 1 1.1 Somatic mutation in cancer 1 1.2 EGFR mutations and lung cancer 2 1.3 Proteogenomic approach for characterization of mutant proteins 4 1.4 Quantification of protein mutation by mass-spectrometry 5 1.5 Thesis objective 6 Chapter 2 Materials and methods 8 2.1 Chemicals and material 8 2.2 Cell lines and cell culture 8 2.3 Mouse xenograft models 9 2.4 Customized database construction 9 2.5 In silico digestion 10 2.6 Immunoprecipitation 10 2.7 Gel-assisted digestion 11 2.8 LC-MS/MS analysis 11 2.9 Database search 12 2.10 LC-PRM-MS 12 2.11 Data analysis 13 2.11 Western blot 14 2.12 RNA extraction and real-time PCR 14 2.13 Statistic analysis 14 Chapter 3 Result 16 3.1 Experimental design 16 3.1.1 Affinity purification of EGFR proteins 16 3.1.2 In-silico digestion of 40 EGFR mutant proteins 17 3.1.3 Identification of wild-type and mutant EGFR proteins by multiple protease strategy 20 3.2 Establishment of LC-PRM-MS approach for absolute quantitation of wild-type and mutant EGFR proteins 23 3.2.1 Target peptide list of EGFR mutations 23 3.2.2 Optimization of LC-PRM-MS settings 24 3.2.3 Construction of calibration curves for wild-type and mutant EGFR proteins 25 3.2.4 Evaluation of quantification analysis 26 3.3 Multiplexed quantitation of wild-type and mutant EGFR proteins in NSCLC cells 27 3.4 Multiplexed quantitation of wild-type and mutant EGFR proteins in mouse xenograft tumors 29 3.5 Detection of wild-type and mutant EGFR proteins in plasma of NSCLC patient 31 3.5.1 Detected plasma EGFR protein by IP with EGFR using PRM 31 3.5.2 Detected EGFR proteins in plasma by sequential affinity purification 33 Chapter 4 Discussion and Conclusion 35 Chapter 5 Reference 39 FIGURES 43 TABLES 76 | |
| dc.language.iso | en | |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 表皮生長因子受體 | zh_TW |
| dc.subject | 癌症蛋白基因體 | zh_TW |
| dc.subject | EGFR | en |
| dc.subject | Oncoproteogenomic | en |
| dc.subject | NSCLC | en |
| dc.title | 建立癌症蛋白基因體策略應用於非小細胞肺癌之多重表皮生長因子受體突變定量分析 | zh_TW |
| dc.title | Development of Oncoproteogenomic Strategy for Multiplexed Quantitation of EGFR Mutations in Non-small-cell Lung Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 韓嘉莉 | |
| dc.contributor.oralexamcommittee | 俞松良,陳璿宇,李岡遠 | |
| dc.subject.keyword | 非小細胞肺癌,表皮生長因子受體,癌症蛋白基因體, | zh_TW |
| dc.subject.keyword | NSCLC,EGFR,Oncoproteogenomic, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202000503 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-02-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | zh_TW |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-D02b48012-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
