Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77103
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴喜美
dc.contributor.authorYu-Hsien Leeen
dc.contributor.author李昱嫻zh_TW
dc.date.accessioned2021-07-10T21:46:45Z-
dc.date.available2021-07-10T21:46:45Z-
dc.date.copyright2020-03-02
dc.date.issued2020
dc.date.submitted2020-02-27
dc.identifier.citation吳宥萱。2018。TEMPO 觸媒氧化澱粉與 pH 應答型微凝膠之製備及物化性質。國立臺灣大學生物資源暨農學院農業化學系碩士論文。台北,台灣。
張馨云。2018。以澱粉為基質製備pH應答型材料之研究。國立臺灣大學生物資源暨農學院農業化學系博士論文。台北,台灣。
Abhari, N., Madadlou, A., Dini, A., & Hosseini Naveh, O. (2017). Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel. Food Chem, 214, 16-24.
Abouelmagd, S. A., Ellah, N. H. A., & Hamid, B. N. A. E. (2019). Temperature and pH dual-stimuli responsive polymeric carriers for drug delivery. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications (pp. 87-109).
Adebowale, K. O., & Lawal, O. S. (2003). Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal of the Science of Food and Agriculture, 83(15), 1541-1546.
Ali, A., & Ahmed, S. (2018). Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J Agric Food Chem, 66(27), 6940-6967.
Apopei Loghin, D. F., Biliuta, G., Coseri, S., & Dragan, E. S. (2017). Preparation and characterization of oxidized starch/poly(N,N-dimethylaminoethyl methacrylate) semi-IPN cryogels and in vitro controlled release evaluation of indomethacin. Int J Biol Macromol, 96, 589-599.
Ashogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch - Stärke, 66(1-2), 41-57.
ASTM E2834 – 12. (2018) Standard guide for measurement of particle size distribution of nanomaterials in suspension by nanoparticle tracking analysis (NTA).
Atkin, N. J., Abeysekera, R. M., & Robards, A. W. (1998). The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydr Polym, 36, 193-204.
Azeredo, H. M. C., & Waldron, K. W. (2016). Crosslinking in polysaccharide and protein films and coatings for food contact – A review. Trends in Food Science & Technology, 52, 109-122.
Badenhuizen, N. (1937). Die struktur des stärkekorns. Protoplasma, 28, 243-326.
Balakrishnan, P., Sreekala, M. S., Geethamma, V. G., Kalarikkal, N., Kokol, V., Volova, T., & Thomas, S. (2019). Physicochemical, mechanical, barrier and antibacterial properties of starch nanocomposites crosslinked with pre-oxidised sucrose. Industrial Crops and Products, 130, 398-408.
Baldwin, P. M., Adler, J., Davies, M. C., & Melia, C. D. (1998). High resolution imaging of starch granule surfaced by atomic force microscopy. Journal of Cereal Science, 27, 255-263.
Bale, S., Khurana, A., Singh, M., & Godugua, C. (2016). Overview on therapeutic applications of microparticulate drug delivery systems. Critical ReviewsTM in Therapeutic Drug Carrier Systems, 33(4), 309–361.
Bazban-Shotorbani, S., Hasani-Sadrabadi, M. M., Karkhaneh, A., Serpooshan, V., Jacob, K. I., Moshaverinia, A., & Mahmoudi, M. (2017). Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release, 253, 46-63.
Bertoft, E. (2017). Understanding starch structure: recent progress. Agronomy, 7(3).
Carmona-Garcia, R., Sanchez-Rivera, M. M., Méndez-Montealvo, G., Garza-Montoya, B., & Bello-Pérez, L. A. (2009). Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 76(1), 117-122.
Casset, F., Imberty, A., Haser, R., Payan, F., & Pe´rez, S. (1995). Molecular modelling of the interaction between the catalytic site of pic pancreatic alpha-amylase and amylose fragments. Eur. J. Biochem., 232, 284-293.
Chatakanonda, P., Varavinit, S., & Chinachoti, P. (2000). Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT - Food Science and Technology, 33(4), 276-284.
Chen, Q., Yu, H., Wang, L., ul Abdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R., Zhang, H., & Chen, X. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5(83), 67459-67474.
Chang, S. Y., Ma, A. W. K., & Lai, H. M. (2019). New insight into the preparation of starch‐based spherical microgels with tunable volume. Starch - Stärke, 71(9-10).
Chong, W. T., Uthumporn, U., Karim, A. A., & Cheng, L. H. (2013). The influence of ultrasound on the degree of oxidation of hypochlorite-oxidized corn starch. LWT - Food Science and Technology, 50(2), 439-443.
Chung, H.-J., Woo, K.-S., & Lim, S.-T. (2004). Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydrate Polymers, 55(1), 9-15.
Chyzy, A., Tomczykowa, M., & Plonska-Brzezinska, M. E. (2020). Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery. Materials (Basel), 13(1-32).
Debet, M. R., & Gidley, M. J. (2007). Why do gelatinized starch granules not dissolve completely?Roles for amylose, protein, and lipid in granule “ghost” integrity. J Agric Food Chem, 55, 4752-4760.
Dang, X., Yang, M., Shan, Z., Mansouri, S., May, B. K., Chen, X., Chen, H., & Woo, M. W. (2017). On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release. Mater Sci Eng C Mater Biol Appl, 74, 493-500.
El Halal, S. L., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreno, N. L., Dias, A. R., & Zavareze Eda, R. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chem, 168, 247-256.
Ermis, M., Calamak, S., Calibasi Kocal, G., Guven, S., Durmus, N. G., Rizvi, I., Hasan, T., Hasirci, N., Hasirci, V., & Demirci, U. (2018). Hydrogels as a new platform to recapitulate the tumor microenvironment. In Handbook of Nanomaterials for Cancer Theranostics (pp. 463-494).
French, D., in: Whistler, R. L., BeMiller, J. N., & Pashalls, E. F. Starch, chemistry and technology, Academic Press, New York 1984, pp. 184–242.
Fujisawa, S., Okita, Y., Fukuzumi, H., Saito, T., & Isogai, A. (2011). Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers, 84(1), 579-583.
Gallant, D. J., Bouchet, B., Buléon, A., & Pérez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clini. Nutr., 46, S3-S16.
Gui-Jie, M., Peng, W., Xiang-Sheng, M., Xing, Z., & Tong, Z. (2006). Crosslinking of corn starch with sodium trimetaphosphate in solid state by microwave irradiation. Journal of Applied Polymer Science, 102(6), 5854-5860.
Gunaratne, A., & Corke, H. (2007). Functional Properties of Hydroxypropylated, Cross-Linked, and Hydroxypropylated Cross-Linked Tuber and Root Starches. Cereal Chemistry, 84(1), 30-37.
Haroon, M., Wang, L., Yu, H., Abbasi, N. M., Zain-ul-Abdin., Saleem, M., Khan, R. K., Ullah, R. S., Summe, R. S., Chen, Q., & Wu, J. (2016). Chemical modification of starch and its application as an adsorbent material. RSC Advances, 6(82), 78264-78285.
Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71-85.
Isogai, A., Hänninen, T., Fujisawa, S., & Saito, T. (2018). Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Progress in Polymer Science, 86, 122-148.
Jantratid, E., Janssen, N., Reppas, C., & Dressman, J. B. (2008). Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res, 25(7), 1663-1676.
Kasemsuwan, T., & Jane , J. (1994). Location of amylose in normal starch granules. II. Locations of phosphodiester cross-linking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chemistry, 71(3), 282-287.
Katoa, Y., & Isogai, A. (2003). Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym, 51, 69-75.
Kaur, L., Singh, J., & Singh, N. (2006). Effect of cross-linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 86(12), 1945-1954.
Khan, S., Ullah, A., Ullah, K., & Rehman, N.-u. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19(5), 456-478.
Klein, B., Vanier, N. L., Moomand, K., Pinto, V. Z., Colussi, R., da Rosa Zavareze, E., & Dias, A. R. (2014). Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chem, 155, 167-173.
Koo, S. H., Lee, K. Y., & Lee, H. G. (2010). Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids, 24(6-7), 619-625.
Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch - Stärke, 211-218.
Kuakpetoon, D., & Wang, Y. J. (2006). Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr Res, 341(11), 1896-1915.
Kuakpetoon, D., & Wang, Y. J. (2008). Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydr Res, 343(1), 90-100.
Lawal, O. (2004). Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry, 87(2), 205-218.
Lack, S., Dulong, V., Picton, L., Le Cerf, D., & Condamine, E. (2007). High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydr Res, 342(7), 943-953.
Li, H., Wu, B., Mu, C., & Lin, W. (2011). Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydrate Polymers, 84(3), 881-886.
Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nat Rev Mater, 1(12): 1-17.
Li.Y., Vries, R., Slaghek, T., Timmermans, J., Stuart, M., & Norde, W. (2009). Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional Ingredients. Biomacromolecules, 10: 1931–1938.
Lim, S., & Seib, P. A. (1983). Preparation and pasting properties of wheat and corn starch Phosphates. Cereal Chem. 70(2): 134-137.
Liu, H., Ramsden, L., & Corke, H. (1999). Physical properties of cross‐linked and acetylated normal and waxy rice starch. Starch - Stärke, 51(7), 249-252.
Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45-52.
Majzoubi, M., Radi, M., Farahnaki, A., Jamalian, J., & Tongdang, T. (2009). Physico-chemical properties of phosphyoryl chloride cross-linked wheat starch. Iranian Polymer Journal (English), 18(6): 491-499
Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydr Polymers, 157, 1226-1236.
Mehfooz, T., Ali, T. M., & Hasnain, A. (2019). Effect of cross-linking on characteristics of succinylated and oxidized barley starch. Journal of Food Measurement and Characterization. doi:10.1007/s11694-018-00021-3.
Moe, S. T., Skják-Braek, G., Elgsaeter, A., & Smidsrad, O. (1993). Swelling of covalently crosslinked alginate gels influence of ionic solutes and nonpolar solvents. Macromolecules, 26, 3589-3597.
Muhammad, K., Hussin, F., Man, Y. C., Ghazali, H. M., & Kennedy, J. F. (2000). Effect of pH on phosphorylation of sago starch. Carbohydr Polymers, 42, 85-90.
Narang, P., & Venkatesu, P. (2019). Efficacy of several additives to modulate the phase behavior of biomedical polymers: A comprehensive and comparative outlook. Adv Colloid Interface Sci, 274, 102042.
Nieuwenhuizen, M. S., Kieboom, A. P. G., & Bekkum, H. (1985). Preparation and calcium complexation properties of a series of oxidized polysaccharides: structural and conformational effects. Starch - Stärke, 37, 192-200.
Oladebeye, A. O., Oshodi, A. A., Amoo, I. A., & Karim, A. A. (2013). Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches. Food Chem, 141(2), 1416-1423.
Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke, 62(8), 389-420.
Pierre, G., Punta, C., Delattre, C., Melone, L., Dubessay, P., Fiorati, A., Pastori, N., Galante, Y. M., & Michaud, P. (2017). TEMPO-mediated oxidation of polysaccharides: An ongoing story. Carbohydr Polym, 165, 71-85.
Pietrzyk, S., Fortuna, T., Juszczak, L., Galkowska, D., Baczkowicz, M., Labanowska, M., & Kurdziel, M. (2018). Influence of amylose content and oxidation level of potato starch on acetylation, granule structure and radicals' formation. Int J Biol Macromol, 106, 57-67.
Raghuwanshi, V. S., & Garnier, G. (2019). Characterisation of hydrogels: Linking the nano to the microscale. Adv Colloid Interface Sci, 274, 102044.
Ratnayake, W. S., & Jackson, D. S. (2008). Phase transition of cross-linked and hydroxypropylated corn (Zea mays L.) starches. LWT - Food Science and Technology, 41(2), 346-358.
Richardson, S., & Gorton, L. (2003). Characterisation of the substituent distribution in starch and cellulose derivatives. Analytica Chimica Acta, 497(1-2), 27-65.
Rodríguez-Marín, M. L., Núñez-Santiago, C., Wang, Y.-J., & Bello-Pérez, L. A. (2010). Physicochemical and structural characteristics of cross-linked banana starch using three cross-linking reagents. Starch - Stärke, 62(10), 530-537.
Saito, T., Hirota, M., Fukuzumi, H., Tamura, N., Heux, L., Kimura, S., & Isoga, A. (2009). Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules, 10, 1992-1996.
Sang, Y., Prakash, O., & Seib, P. A. (2007). Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydrate Polymers, 67(2), 201-212.
Sang, Y., Seib, P. A., Herrera, A. I., Prakash, O., & Shi, Y.-C. (2010). Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chemistry, 118(2), 323-327.
Sangseethong, K., Termvejsayanon, N., & Sriroth, K. (2010). Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches. Carbohydrate Polymers, 82(2), 446-453.
Shah, N., Mewada, R. K., & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Reviews in Chemical Engineering, 32(2): 265-270.
Shukri, R., & Shi, Y. C. (2017). Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches. Food Chem, 214, 90-95.
Singh, A. V., & Nath, L. K. (2012). Synthesis and evaluation of physicochemical properties of cross-linked sago starch. Int J Biol Macromol, 50(1), 14-18.
Shi, M., Gu, F., Wu, J., Yu, S., & Gao, Q. (2013). Preparation, physicochemical properties, and in vitro digestibility of cross-linked resistant starch from pea starch. Starch - Stärke, 65(11-12), 947-953.
Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21(1), 1-22.
Sukhija, S., Singh, S., & Riar, C. S. (2016). Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocolloids, 55, 56-64.
Sun, F., Liu, J., Liu, X., Wang, Y., Li, K., Chang, J., Yang, G., & He, G. (2017). Effect of the phytate and hydrogen peroxide chemical modifications on the physicochemical and functional properties of wheat starch. Food Res Int, 100, 180-192.
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165.
Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., & Bannerjee, S. K. (2012). Drug delivery systems: An updated review. Int J Pharm Investig, 2(1), 2-11.
Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch - Stärke, 67(1-2), 55-68.
Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., & da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chem, 221, 1546-1559.
Veelaert, S., Polling, M., & Wageningen, D. (1994). Structural and physico-chemical changes of potato starch along periodate oxidation. Starch - Stärke, 46, 263-268.
Wang, P., Sheng, F., Tang, S. W., ud-Din, Z., Chen, L., Nawaz, A., Hu, C., & Xiong, H. (2018). Synthesis and Characterization of Corn Starch Crosslinked with Oxidized Sucrose. Starch - Stärke.
Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food Funct, 4(11), 1564-1580.
Wang, Y. J., & Wang, L. (2002). Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 52, 207-217.
Wattanachanta, S., Muhammad, K., Hashim, D., & Rahmanb, R. (2003). Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chem, 80, 463-471.
Wu, C.N., & Lai, H.M. (2019). Novel pH-responsive granules with tunable volumes from oxidized corn starches. Carbohydrate Polymers, 208, 201-212.
Xiao, H. X., Lin, Q. L., Liu, G. Q., & Yu, F. X. (2012). A comparative study of the characteristics of cross-linked, oxidized and dual-modified rice starches. Molecules, 17(9), 10946-10957.
Yeh, A.-I., & Li, J.-Y. (1996). Kinetics of phase transition of native, cross‐linked, and hydroxypropylated rice starches. Starch - Stärke, 48(1), 17-21.
Yeh, A.-I., & Yeh, S.-L. (1993). Some Characteristics of hydroxypropylated and cross-linked rice starch. Cereal Chemistry, 70(5), 596-601.
Zhang, B., Long, J., Xie, Q., Tian, Y., Xu, X., & Jin, Z. (2016). Rheological characterization of pH-responsive carboxymethyl starch/β-cyclodextrin microgels. Starch - Stärke, 68(1-2), 29-36.
Zhang, B., Wei, B., Hu, X., Jin, Z., Xu, X., & Tian, Y. (2015). Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities. Carbohydr Polym, 124, 245-253.
Zhang, Y.-R., Wang, X.-L., Zhao, G.-M., & Wang, Y.-Z. (2012). Preparation and properties of oxidized starch with high degree of oxidation. Carbohydrate Polymers, 87(4), 2554-2562.
Zhao, J., Chen, Z., Jin, Z., Buwalda, P., Gruppen, H., & Schols, H. A. (2015). Effects of granule size of cross-linked and hydroxypropylated sweet potato starches on their physicochemical properties. J Agric Food Chem, 63(18), 4646-4654.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77103-
dc.description.abstract本研究擬分別以TEMPO (2,2,6,6-tetramethyl-pyperidine-1-oxyl)-NaClO-NaClO2氧化系統及以三偏磷酸鈉(sodium trimetaphosphate, STMP)製備氧化及交聯糯性玉米澱粉;再以經氧化及交聯雙修飾之糯性玉米澱粉製備pH應答型微凝膠。氧化澱粉之糊液黏度測定結果顯示,當澱粉與氧化劑濃度提高時,澱粉氧化度亦有相對提高的趨勢;當氧化度提高時,其糊化起始溫度降低、尖峰黏度提高,且以最高劑量組合(S500T20,澱粉及TEMPO濃度分別為5%及0.2 mmol/g starch)最為顯著。熱性質分析結果與糊液黏度測定結果相似,支鏈澱粉雙股螺旋結構之解構溫度(onset temperature, To; peak temperature, Tp)隨著澱粉濃度和氧化劑劑量提高而降低,熱焓值(enthalpy, ΔH)亦隨氧化度之提高而降低,尤以S500T20之熱焓值降低最為顯著。氧化澱粉之分子結構分析結果顯示,隨著氧化度的提高,澱粉分子有明顯降解情形;當於高氧化劑量(T20)時,澱粉分子除發生降解外,也不排除可能有分子鏈間的交聯反應,導致出現氧化度越高,測定之分子量反而提高。由FTIR圖譜中之-C-O-C-鍵結特徵峰(1319 cm-1)亦可證實,除了在澱粉及氧化劑量濃度均低的組合(S050T07,澱粉及TEMPO濃度分別為0.5%及0.07 mmol/g starch;S050T10,澱粉及TEMPO濃度分別為0.5%及0.1 mmol/g starch)外,高濃度組合確實同時產生氧化與交聯反應。交聯澱粉試驗之結果顯示,當反應時間長於60 min,STMP交聯劑與澱粉之間傾向交聯反應,並隨著交聯劑濃度的提高,相對交聯程度亦顯著提高,此可由其偏光性增強及熱性質To與Tp提高證實。雙修飾澱粉試驗結果顯示,無論雙修飾順序如何,相同氧化條件之雙修飾澱粉有相近的氧化度,但先氧化後交聯之樣品(OS-CS),其顆粒完整性低,並喪失糊液黏度。雙修飾澱粉的膨潤力主要受第二次化學修飾影響顯著,而溶解度則與經第一次修飾後的澱粉特性相似。因此,於微凝膠試驗時,為確保澱粉粒之膨潤完整性,故以先交聯再氧化處理(CS-OS)之雙修飾澱粉進行。先經交聯(CS015-60)再氧化(S500T20)所製備微凝膠(CSH-OS),以90oC預糊化後,其澱粉粒套膜仍可適當維持。初步試驗結果顯示,微凝膠之體積(以膨潤力與收縮率為指標)與流動性(以流變性質為指標)會受環境pH值和離子強度影響,此與應用相關之性質值得再深入探討。zh_TW
dc.description.abstractThis study intends to prepare two types of single chemical modified starch, which are the oxidized and the cross-linked waxy corn starches by using TEMPO (2,2,6,6-tetramethyl-pyperidine-1-oxyl)-NaClO-NaClO2 oxidation system and trimetaphosphate (STMP), respectively. Furthermore, the dual modified waxy starch were prepared by either oxidizing first followed by cross-linking or the reverse. Finally, the characters of pH-responsive microgels made of dual modified waxy corn starch were investigated. It found that the gelatinization temperature decreased and the peak viscosity increased aas the degree of oxidation (DO) increased. The highest DO of the oxidized starch could be obtained in the reaction condition containing 5% starch and 0.2 mmol / g starch of TEMPO (S500T20). The de-association temperatures, onset temperature (To), peak temperature (Tp) and the enthalpy of the amylopectin decreased as the concentrations of starch and oxidant increased as well. The averaged molecular weught (Mw) of oxidized starch deceased significantly, indicate that the degradation of molecules occurred, while the higher Mw of the oxidized waxy corn starch with higher DO was investigated. This is attributed to the cross-links between inter- or intra- starch molecular chains through the acetyl formation of carboxyl group in aldehyde of oxidized glucose unit and the hydroxyl group in glucose unit. This is evidenced by characteristic FTIR absorption peak of C-O-C bond (1319 cm-1). For the cross-linked starches made of STMP, the cross-linking was obvious when reaction time was above 60 min, and the relative degree of cross-linking was significantly increased with the increased with the increased amount of STMP. The cross-linked starch had more intensive polarized signal and higher To and Tp determined by differential scanning calorimetry (DSC). The similar DO of dual modified starches could be obtained under the same reaction condition (i.e. concentration of starch and oxidants) no matter what the order of modification (cross-linking followed by oxidation (CS-OS) or reverse (OS-CS)). The dual modified starch (OS-CS) tended to rupture during gelatinization with very low viscosity. The swelling power of dual modified starch was dominated by the first chemical modification, while its solubility was dependent on the second modification. The microgel (CSH-OS) made of pregelatinized (at 90oC) dual modified waxy corn starch, which was prepared by cross-linking (CS015-60) first followed by oxidizing (S500T20) show the intact envelope of swollen starch granule. This microgel shows the pH-responsive behavior of swelling and shrinkage and the characteristic rheological properties. The specific properties of the microgel prepared in this study is worthy of further investigation for practical application.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:46:45Z (GMT). No. of bitstreams: 1
ntu-109-R06623025-1.pdf: 5452969 bytes, checksum: c4059753b39cf6136f6e4307228ad73b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 I
中文摘要 III
ABSTRACT IV
目錄 VI
壹、前言 1
貳、文獻回顧 3
一、澱粉結構 3
二、澱粉修飾方式 6
三、氧化澱粉之製備與特性 8
1. 氧化澱粉之製備 8
1.1 常用澱粉氧化修飾之氧化劑 8
1.2 TEMPO觸酶氧化系統 9
2. 氧化澱粉之特性 10
四、交聯澱粉之製備與特性 11
1. 交聯澱粉之製備 11
2. 交聯澱粉之特性 13
五、雙修飾澱粉之製備與應用 13
六、環境應答型藥物載體 14
1. 微凝膠 14
2. 應答型微凝膠 15
2.1 簡介 15
2.2 pH應答性微凝膠 16
3. 研究近況與未來趨勢 18
參、材料與方法 19
1. 實驗架構 19
2. 材料 20
3. 製備方法 20
3.1 TEMPO觸媒氧化澱粉(oxidized starch, OS)製備 20
3.2 交聯澱粉(Cross-linked starch, CS)製備 22
3.3 雙修飾澱粉(Dual modification)製備 22
3.3.1 先氧化後交聯澱粉(OS-CS)製備 22
3.3.2 先交聯後氧化澱粉(CS-OS)製備 22
3.4 微凝膠製備 22
4. 性質測定 23
4.1 氧化澱粉性質測定與分析 23
4.1.1 氧化度(Degree of oxidation, DO)測定 23
4.1.2 氧化澱粉帶電量測定 23
4.1.3 光學和偏光顯微鏡觀察 23
4.1.4 掃描式電子顯微鏡觀察 24
4.1.5 糊液黏度性質測定 24
4.1.6 熱性質分析 24
4.1.7 澱粉分子量分布 24
4.1.8 澱粉分子鏈長分布 25
4.1.9 傅立葉轉換紅外光譜(FTIR)分析 25
4.2 交聯澱粉性質測定與分析 26
4.2.1 糊液黏度性質測定 26
4.2.2 相對交聯度(Lc)計算 26
4.2.3 光學和偏光顯微鏡觀察 26
4.2.4 熱性質分析 27
4.2.5 傅立葉轉換紅外光譜(FTIR)分析 27
4.3 雙修飾澱粉性質測定與分析 27
4.3.1 氧化度測定 27
4.3.2 相對交聯度(Lc)計算 27
4.3.3 光學和偏光顯微鏡觀察 27
4.3.4 掃描式電子顯微鏡觀察 27
4.3.5 糊液黏度測定 27
4.3.6 膨潤力與溶解度測定 27
4.3.7 雙修飾澱粉預糊化溫度試驗 28
4.4 微凝膠性質測定與分析 28
4.4.1 光學顯微鏡觀察 28
4.4.2 膨潤力分析 28
4.4.2 流變性質測定 29
肆、結果與討論 30
一、氧化澱粉 30
1. 氧化度與界面電位 30
1.1 氧化度 30
1.2 界面電位 33
2. 顯微鏡觀察 34
2.1 光學和偏光顯微鏡 34
2.3 掃描式電子顯微鏡 36
3. 糊液黏度性質 38
4. 熱性質 44
5. 分子結構 50
5.1 分子量分布 50
5.2 分子鏈長分布 53
6. 傅立葉轉換紅外光譜 (FTIR) 56
二、交聯澱粉 57
1. 相對交聯度 57
2. 顯微鏡觀察 58
2.1 光學和偏光顯微鏡 58
2.2 掃描式電子顯微鏡 60
3. 糊液黏度性質 61
4. 熱性質 63
5. 傅立葉轉換紅外光譜 (FTIR) 63
三、雙修飾澱粉 65
1. 氧化度與相對交聯度 65
2. 糊液黏度性質 66
3. 顯微鏡觀察 67
4. 膨潤力與溶解度 69
5. 預糊化溫度 70
四、微凝膠 72
1. 膨潤力 72
2. 流變性質 74
伍、結論 78
陸、參考文獻 80
附錄 86
dc.language.isozh-TW
dc.title以氧化和交聯雙重修飾糯性玉米澱粉製備pH應答型微凝膠zh_TW
dc.titlePreparation and characterization of oxidized and cross-linked dual modified waxy corn starch for pH-responsive microgelen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邵貽沅,張永和,呂廷璋
dc.subject.keywordTEMPO/NaClO/NaClO2氧化澱粉,STMP交聯澱粉,雙修飾澱粉,預糊化,應答型微凝膠,zh_TW
dc.subject.keywordTEMPO / NaClO / NaClO2 oxidized starch,STMP cross-linked starch,dual modified starch,pregelatinized,responsive microgel,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202000650
dc.rights.note未授權
dc.date.accepted2020-02-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-109-R06623025-1.pdf
  目前未授權公開取用
5.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved