請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧 | |
| dc.contributor.author | Yu-Shan Chen | en |
| dc.contributor.author | 陳禹杉 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:50:48Z | - |
| dc.date.available | 2022-09-08 | |
| dc.date.available | 2021-05-19T17:50:48Z | - |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | 1. MacLean, H.E., G.L. Warne, and J.D. Zajac, Localization of functional domains in the androgen receptor. J Steroid Biochem Mol Biol, 1997. 62(4): p. 233-42.
2. Galani, A., et al., Androgen insensitivity syndrome: clinical features and molecular defects. Hormones (Athens), 2008. 7(3): p. 217-29. 3. Tan, M.H., et al., Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin, 2015. 36(1): p. 3-23. 4. Davey, R.A. and M. Grossmann, Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev, 2016. 37(1): p. 3-15. 5. Mills, I.G., Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat Rev Cancer, 2014. 14(3): p. 187-98. 6. Shen, M.Q. and H. Shi, Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. International Journal of Endocrinology, 2015. 7. Foradori, C.D., M.J. Weiser, and R.J. Handa, Non-genomic actions of androgens. Front Neuroendocrinol, 2008. 29(2): p. 169-81. 8. Wang, S.H., et al., Identification of androgen response elements in the enhancer I of hepatitis B virus: a mechanism for sex disparity in chronic hepatitis B. Hepatology, 2009. 50(5): p. 1392-402. 9. Ma, W.L., et al., Androgen receptor roles in hepatocellular carcinoma, fatty liver, cirrhosis and hepatitis. Endocr Relat Cancer, 2014. 21(3): p. R165-82. 10. Wang, S.H., P.J. Chen, and S.H. Yeh, Gender disparity in chronic hepatitis B: Mechanisms of sex hormones. J Gastroenterol Hepatol, 2015. 30(8): p. 1237-45. 11. Kanda, T. and O. Yokosuka, The androgen receptor as an emerging target in hepatocellular carcinoma. J Hepatocell Carcinoma, 2015. 2: p. 91-9. 12. Wu, M.H., et al., Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Transl Med, 2010. 2(32): p. 32ra35. 13. Lin, H.Y., et al., Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology, 2008. 47(6): p. 1924-35. 14. Yu, I.C., et al., Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome. Diabetes, 2014. 63(10): p. 3180-8. 15. Dubois, V., et al., Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice. Endocrinology, 2016. 157(2): p. 648-65. 16. Bradley, C.A., Liver: Spatial division of hepatic metabolic labour. Nat Rev Gastroenterol Hepatol, 2017. 14(3): p. 139. 17. Grompe, M., The origin of hepatocytes. Gastroenterology, 2005. 128(7): p. 2158-60. 18. Soto-Gutierrez, A., et al., Pre-clinical and clinical investigations of metabolic zonation in liver diseases: The potential of microphysiology systems. Exp Biol Med (Maywood), 2017: p. 1535370217707731. 19. Kietzmann, T., Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol, 2017. 11: p. 622-630. 20. Hijmans, B.S., et al., Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie, 2014. 96: p. 121-9. 21. Halpern, K.B., et al., Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature, 2017. 542(7641): p. 352-356. 22. LeCluyse, E.L., et al., Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol, 2012. 42(6): p. 501-48. 23. Behari, J., et al., beta-catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesity in mice. Am J Pathol, 2014. 184(12): p. 3284-98. 24. Yang, J., et al., beta-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology, 2014. 60(3): p. 964-76. 25. Behari, J., The Wnt/beta-catenin signaling pathway in liver biology and disease. Expert Rev Gastroenterol Hepatol, 2010. 4(6): p. 745-56. 26. Yun, M.S., et al., Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J Cell Sci, 2005. 118(Pt 2): p. 313-22. 27. Gerbal-Chaloin, S., et al., The WNT/beta-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Mol Pharmacol, 2014. 86(6): p. 624-34. 28. Nejak-Bowen, K.N. and S.P. Monga, Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol, 2011. 21(1): p. 44-58. 29. Yardy, G.W. and S.F. Brewster, Wnt signalling and prostate cancer. Prostate Cancer Prostatic Dis, 2005. 8(2): p. 119-26. 30. Bandapalli, O.R., et al., Transcriptional activation of the beta-catenin gene at the invasion front of colorectal liver metastases. J Pathol, 2009. 218(3): p. 370-9. 31. MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26. 32. Burke, Z.D., et al., Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology, 2009. 136(7): p. 2316-2324 e1-3. 33. Burke, Z.D. and D. Tosh, The Wnt/beta-catenin pathway: master regulator of liver zonation? Bioessays, 2006. 28(11): p. 1072-7. 34. Han, S., et al., An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells, 2011. 29(2): p. 217-28. 35. Odom, D.T., et al., Control of pancreas and liver gene expression by HNF transcription factors. Science, 2004. 303(5662): p. 1378-81. 36. Parviz, F., et al., Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet, 2003. 34(3): p. 292-6. 37. Colletti, M., et al., Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology, 2009. 137(2): p. 660-72. 38. Hatzis, P., et al., Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol, 2008. 28(8): p. 2732-44. 39. Stanulovic, V.S., et al., Hepatic HNF4alpha deficiency induces periportal expression of glutamine synthetase and other pericentral enzymes. Hepatology, 2007. 45(2): p. 433-44. 40. Jaworski, T., Degradation and beyond: control of androgen receptor activity by the proteasome system. Cell Mol Biol Lett, 2006. 11(1): p. 109-31. 41. Lin, H.K., et al., Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol Endocrinol, 2004. 18(10): p. 2409-23. 42. Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001. 70: p. 503-33. 43. Thrower, J.S., et al., Recognition of the polyubiquitin proteolytic signal. EMBO J, 2000. 19(1): p. 94-102. 44. Lin, H.K., et al., Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7200-5. 45. Hu, Y.C., et al., Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J Biol Chem, 2004. 279(32): p. 33438-46. 46. Mitani, T., et al., Autophagic degradation of the androgen receptor mediated by increased phosphorylation of p62 suppresses apoptosis in hypoxia. Cell Signal, 2015. 27(10): p. 1994-2001. 47. Heuson, J.C., A. Coune, and R. Heimann, Cell proliferation induced by insulin in organ culture of rat mammary carcinoma. Exp Cell Res, 1967. 45(2): p. 351-60. 48. Wang, W., et al., Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev Cell, 2009. 16(5): p. 764-71. 49. Eisenberg, M.L., et al., Insulin receptor (IR) and glucose transporter 2 (GLUT2) proteins form a complex on the rat hepatocyte membrane. Cell Physiol Biochem, 2005. 15(1-4): p. 51-8. 50. Tatulian, S.A., Structural Dynamics of Insulin Receptor and Transmembrane Signaling. Biochemistry, 2015. 54(36): p. 5523-32. 51. Rubinsztein, D.C., G. Marino, and G. Kroemer, Autophagy and aging. Cell, 2011. 146(5): p. 682-95. 52. Laplante, M. and D.M. Sabatini, An emerging role of mTOR in lipid biosynthesis. Curr Biol, 2009. 19(22): p. R1046-52. 53. Tzatsos, A. and K.V. Kandror, Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol, 2006. 26(1): p. 63-76. 54. Tilg, H. and A.R. Moschen, Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol Metab, 2008. 19(10): p. 371-9. 55. Brown, A.E., et al., p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab, 2015. 308(1): p. E63-70. 56. Nyman, E., G. Cedersund, and P. Stralfors, Insulin signaling - mathematical modeling comes of age. Trends Endocrinol Metab, 2012. 23(3): p. 107-15. 57. Bazotte, R.B., L.G. Silva, and F.P. Schiavon, Insulin resistance in the liver: deficiency or excess of insulin? Cell Cycle, 2014. 13(16): p. 2494-500. 58. Kubota, N., et al., Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun, 2016. 7: p. 12977. 59. Gruppuso, P.A. and J.A. Sanders, Regulation of liver development: implications for liver biology across the lifespan. J Mol Endocrinol, 2016. 56(3): p. R115-25. 60. Mounier, C. and B.I. Posner, Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol, 2006. 84(7): p. 713-24. 61. Gletsu, N., W. Dixon, and M.T. Clandinin, Insulin receptor at the mouse hepatocyte nucleus after a glucose meal induces dephosphorylation of a 30-kDa transcription factor and a concomitant increase in malic enzyme gene expression. J Nutr, 1999. 129(12): p. 2154-61. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7706 | - |
| dc.description.abstract | 雄激素受體(androgen receptor, AR基因)除了在生殖器官內扮演非常重要的角色外,目前研究也發現男性的肝臟也是一個會受到雄激素所調控的器官之一。我們實驗室過去發現了雄激素訊息傳遞路徑可以刺激B型肝炎病毒(HBV)在肝臟細胞內轉譯層面的調控機制。然而,雄激素受體在肝臟內一般的生理功能以及其調控機制仍然還未被釐清。不過從其他團隊的研究中發現當肝臟雄激素受體剔除小鼠在餵食高脂飼料後,可以觀察到有胰島素阻抗的現象產生,這樣的發現似乎點出了肝臟中的雄激素受體可能參與了葡萄糖的代謝調控。為了進一步探討雄激素受體在肝臟中的代謝功能,我們實驗室首先建立了在肝臟中會大量表現AR基因的轉殖基因小鼠模式。而在進行代謝相關的檢測實驗中,我們發現禁食後AR蛋白質的表現會大幅減少,但當我們注射insulin後短時間內AR又會大量表現。這代表肝臟中的AR是會受到insulin pathway所調控的基因之一。因此本論文的研究主要會專於探討insulin pathway在肝臟內調控AR基因表現的機制。
選用在飢餓狀態下注射不同時間insulin的H-ARTG小鼠作為我們的實驗樣品,利用西方墨點法以及RT-qPCR檢測蛋白質以及RNA的表現差異。結果發現AR在insulin刺激後短時間內表現即會大量提高,主要可能是受一個非轉譯層面的調控機制所影響。緊接著我們利用IHC staining的染色技術去觀察此時期AR在肝臟中的分佈情形,發現受到insulin刺激的AR主要會出現在肝臟中pericentral的區域 (zone 3 區域)。 這樣的結果表示男性肝臟中的AR可能會有一調控肝臟pericentral的區域代謝機制的生理功能。而這個特殊的分佈現象在進行去勢手術後就消失了,代表insulin調控AR在pericentral的區域表現是要有androgen的存在下才會發生。而相關的調控機制我們目前也正在進行研究中。我們預期這次研究的結果可以幫助我們在未來更深一步釐清AR在pericentral的區域的生理功能為何。 | zh_TW |
| dc.description.abstract | In addition to the sex organs, liver is also identified as an androgen responsive organ in men, as our previous finding showed that the androgen/androgen receptor (AR) pathway can stimulate the transcription of HBV in hepatocytes. However, the physiological function of this pathway in liver is still remained unclear. Some clues from the conditional AR knockout mice suggested that hepatic AR might function in glucose metabolism, under the insulin resistance condition induced by high fat diet. Aiming to further study the function of hepatic AR in metabolism, our previous study established a hepatic specific AR transgenic (H-ARtg) mouse model. In this animal model, we found that the hepatic AR was significantly decreased by fasting, which however was increased by the insulin treatment. It suggests that the hepatic AR is a putative target gene responsive to the insulin pathway in liver. This study thus aims to study the mechanism for the elevation of AR stimulated by insulin pathway in liver.
The RNA and protein analysis for AR in male H-ARtg injected with insulin after fasting indicated that the AR protein is elevated shortly by insulin stimulation, mainly at the post-transcriptional level. We have established the immunohistochemistry staining procedure for detecting the AR in liver tissues, which showed that the hepatic AR protein induced by insulin preferentially locates in hepatocytes at the pericentral area in liver lobules. It thus suggests a physiological function of AR in specific pericentral metabolic zone in male livers. Such a unique pattern is diminished by castration, indicating its dependence on the androgen ligand. The mechanism to restrict the AR at pericentral zonal region is currently under investigation. We expect the results will form the basis for future investigate on the metabolic functions of AR in hepatocytes at the specific pericentral metabolic zone. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:50:48Z (GMT). No. of bitstreams: 1 ntu-106-R03445139-1.pdf: 26183907 bytes, checksum: 525ac13a9f2197df3f9e226da75650e0 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書........................................................................................................ I
致謝…………………………………………………………………………………...II 中文摘要……………………………………………………………………………..III Abstract........................................................................................................................IV 目錄...............................................................................................................................V 序論…………............................................................................................................... 1 1. 雄激素受體 (Androgen receptor, AR) 之結構及功能……..…………….……1 2. 肝臟也是一個反應雄激素路徑調控的器官…………………………………...2 2-1肝臟中的AR可以影響HBV在肝細胞內的轉譯調控……………………..2 2. 2剔除肝臟內的AR會促使餵食高脂飼料的小鼠產生肥胖的現象………...2 3. 肝臟中肝小葉之zonal pattern與代謝相關的功能及調控機制…………..…...3 3. 1 肝小葉 (liver lobule) 之zonal pattern介紹………………………….........3 3. 2 肝小葉之zonal pattern調控機制…………………………………..………4 4. AR在肝臟內表現的調控機制…………………………………………………..6 5. 胰島素路徑及功能介紹………………………………………………………...7 6. 胰島素在肝臟不同zonal area的功能…………………………………………..8 研究假說與策略………………………………………………………………………9 材料與方法…………………………………………………………………………..10 1. 實驗小鼠……………………………………………………………………….10 2. 免疫組織化學染色法(Immunohistochemistry, IHC)………………………....12 3. 免疫螢光染色法(Immunofluorescence, IF)…………………………………...13 4. 蛋白職定量分析……………………………………………………………….14 5. SDS-PAGE蛋白質膠體電泳…………………………………………………...14 6. 西方墨點法(Western blotting)…………………………………………………15 7. 反轉錄定量聚合酶連鎖反應(Quantitative reverse transcription-PCR, qPCR)…………………………………………………………………………...16 結果…………………………………………………………………………………..18 1. 在禁食狀態下AR的表現量不論是蛋白質或是RNA皆會下降……….…....18 2. 禁食狀態下施予insulin的刺激引發AR蛋白質快速上升……………….…18 3. 使用免疫螢光染色觀察AR在肝臟裡面的分布狀態…………………….….19 4. 建立利用免疫組織化學染色法觀察AR在肝臟的分佈型態之方法…….….19 5. 利用IHC染色觀察到ARTG小鼠在禁食後AR表現明顯下降………….…20 6. 禁食後施打insulin會造成AR在肝臟中特殊pericentral區域的分佈….….20 7. 雄激素參與禁食下insulin刺激AR表現上升之調控…………………….….21 8. 雄激素的存在對於受insulin刺激的AR在肝臟中分佈有所影響……….….21 9. 蛋白質降解的調控和AR在短時間內表現量上升的關係…………………..22 10. proteasome以及lysosome所影響的AR在肝臟的分佈情形…………….….22 11. 進一步探討可能影響AR表現在zone 3的因素………………………….…23 討論…………………………………………………………………………………..24 1. 染色技術的選擇……………………………………………………………….24 2. 胰島素調控AR的機制………………………………………………………..24 3. 探討AR在肝臟的特定區域表現和代謝機制的關聯性……………………..25 圖表附錄……………………………………………………………………………..27 參考文獻.........................................,............................................................................41 | |
| dc.language.iso | zh-TW | |
| dc.title | 胰島素路徑調控肝臟雄激素受體表現的分子機制研究 | zh_TW |
| dc.title | Investigate the mechanism for the insulin pathway to regulate the expression of hepatic androgen receptor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳培哲,丁詩同,蔡曜聲 | |
| dc.subject.keyword | 雄性激素受體,胰島素,禁食,肝小葉代謝區域, | zh_TW |
| dc.subject.keyword | androgen receptor,insulin,fasting,metabolic zone, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201703206 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 25.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
