Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77059
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林郁真(Yu-Chen Lin)
dc.contributor.authorZih-Yu Chenen
dc.contributor.author陳姿伃zh_TW
dc.date.accessioned2021-07-10T21:45:03Z-
dc.date.available2021-07-10T21:45:03Z-
dc.date.copyright2020-07-20
dc.date.issued2020
dc.date.submitted2020-07-08
dc.identifier.citationAbdel-Wahab, A.-M., Al-Shirbini, A.-S., Mohamed, O. and Nasr, O. 2017. Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core-shell nanostructures. Journal of Photochemistry and Photobiology A: Chemistry 347, 186-198.
Al-Kattan, A., Ryabchikov, Y.V., Baati, T., Chirvony, V., Sanchez-Royo, J.F., Sentis, M., Braguer, D., Timoshenko, V.Y., Esteve, M.-A. and Kabashin, A.V. 2016. Ultrapure laser-synthesized Si nanoparticles with variable oxidation states for biomedical applications. Journal of Materials Chemistry B 4(48), 7852-7858.
Alam, A., Howlader, M. and Deen, M. 2013. Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding. ECS Journal of Solid State Science and Technology 2(12), P515-P523.
Álvarez, P.M., Jaramillo, J., Lopez-Pinero, F. and Plucinski, P.K. 2010. Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water. Applied Catalysis B: Environmental 100(1-2), 338-345.
Anastasescu, C., Negrila, C., Angelescu, D.G., Atkinson, I., Anastasescu, M., Spataru, N., Zaharescu, M. and Balint, I. 2018. Particularities of photocatalysis and formation of reactive oxygen species on insulators and semiconductors: cases of SiO 2, TiO 2 and their composite SiO 2–TiO 2. Catalysis Science Technology 8(21), 5657-5668.
Baker, D.R. and Kasprzyk-Hordern, B. 2013. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Science of the Total Environment 454, 442-456.
Beydoun, D., Amal, R., Low, G. and McEvoy, S. 2002. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. Journal of Molecular Catalysis A: Chemical 180(1-2), 193-200.
Beydoun, D., Amal, R., Low, G.K.-C. and McEvoy, S. 2000. Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. The Journal of Physical Chemistry B 104(18), 4387-4396.
Bharti, B., Kumar, S., Lee, H.-N. and Kumar, R. 2016. Formation of oxygen vacancies and Ti 3+ state in TiO 2 thin film and enhanced optical properties by air plasma treatment. Scientific reports 6, 32355.
Blöchl, P.E. 1994. Projector augmented-wave method. Physical review B 50(24), 17953.
Boehme, D.E., Vincent, K. and Brown, O.R. 1976. Oxygen and toxicity inhibition of amino acid biosynthesis. Nature 262(5567), 418-420.
Bokor, G. and Anderson, P.D. 2014. Ketamine: an update on its abuse. Journal of pharmacy practice 27(6), 582-586.
Bound, J.P. and Voulvoulis, N. 2005. Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environmental health perspectives 113(12), 1705-1711.
Calza, P., Sakkas, V., Medana, C., Baiocchi, C., Dimou, A., Pelizzetti, E. and Albanis, T. 2006. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Applied Catalysis B: Environmental 67(3-4), 197-205.
Castiglioni, S., Borsotti, A., Senta, I. and Zuccato, E. 2015. Wastewater analysis to monitor spatial and temporal patterns of use of two synthetic recreational drugs, ketamine and mephedrone, in Italy. Environmental science technology 49(9), 5563-5570.
Chang, C.-F. and Man, C.-Y. 2011. Titania-coated magnetic composites as photocatalysts for phthalate photodegradation. Industrial engineering chemistry research 50(20), 11620-11627.
Chen, F., Yan, F., Chen, Q., Wang, Y., Han, L., Chen, Z. and Fang, S. 2014. Fabrication of Fe 3 O 4@ SiO 2@ TiO 2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Transactions 43(36), 13537-13544.
Chen, P., Wang, F., Chen, Z.-F., Zhang, Q., Su, Y., Shen, L., Yao, K., Liu, Y., Cai, Z. and Lv, W. 2017. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Applied Catalysis B: Environmental 204, 250-259.
Chen, P., Zhang, Q., Su, Y., Shen, L., Wang, F., Liu, H., Liu, Y., Cai, Z., Lv, W. and Liu, G. 2018. Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: Dechloridation, detoxicity, and a new superoxide radical model study. Chemical Engineering Journal 332, 737-748.
Cheng, H., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, Z. and Jiang, M. 2009. Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method. Journal of Solid State Chemistry 182(8), 2274-2278.
Chiaia, A.C., Banta-Green, C. and Field, J. 2008. Eliminating solid phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in US wastewaters. Environmental science technology 42(23), 8841-8848.
Choi, J., Lee, H., Choi, Y., Kim, S., Lee, S., Lee, S., Choi, W. and Lee, J. 2014. Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: Effects of wastewater effluent matrix and catalyst modifications. Applied Catalysis B: Environmental 147, 8-16.
Cunningham, V.L., Binks, S.P. and Olson, M.J. 2009. Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regulatory Toxicology and Pharmacology 53(1), 39-45.
Daimon, T. and Nosaka, Y. 2007. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. The Journal of Physical Chemistry C 111(11), 4420-4424.
Di Paola, A., García-López, E., Marcì, G. and Palmisano, L. 2012. A survey of photocatalytic materials for environmental remediation. Journal of hazardous materials 211, 3-29.
Ding, X., Zhao, K. and Zhang, L. 2014. Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environmental science technology 48(10), 5823-5831.
Du, P., Li, K., Li, J., Xu, Z., Fu, X., Yang, J., Zhang, H. and Li, X. 2015. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water research 84, 76-84.
Elmolla, E.S. and Chaudhuri, M. 2010. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252(1-3), 46-52.
Enayati Ahangar, L., Movassaghi, K., Emadi, M. and Yaghoobi, F. 2016. Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@ SiO2/TiO2) for reusing of textile wastewater. Nanochemistry Research 1(1), 33-39.
Eslami, A., Amini, M.M., Yazdanbakhsh, A.R., Mohseni‐Bandpei, A., Safari, A.A. and Asadi, A. 2016. N, S co‐doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non‐steroidal anti‐inflammatory drugs in water: a comparative study. Journal of Chemical Technology Biotechnology 91(10), 2693-2704.
Essam, T., Amin, M.A., El Tayeb, O., Mattiasson, B. and Guieysse, B. 2007. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water research 41(8), 1697-1704.
Félix, L.M., Serafim, C., Martins, M.J., Valentim, A.M., Antunes, L.M., Matos, M. and Coimbra, A.M. 2017. Morphological and behavioral responses of zebrafish after 24 h of ketamine embryonic exposure. Toxicology and applied pharmacology 321, 27-36.
Fagan, R., McCormack, D.E., Dionysiou, D.D. and Pillai, S.C. 2016. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing 42, 2-14.
Farhanian, D., De Crescenzo, G. and Tavares, J.R. 2017. Kinetics, chemistry, and morphology of syngas photoinitiated chemical vapor deposition. Langmuir 33(8), 1780-1791.
Fent, K., Weston, A.A. and Caminada, D. 2006. Ecotoxicology of human pharmaceuticals. Aquatic toxicology 76(2), 122-159.
Gu, D., Guo, C., Hou, S., Lv, J., Zhang, Y., Feng, Q., Zhang, Y. and Xu, J. 2019. Kinetic and mechanistic investigation on the decomposition of ketamine by UV-254 nm activated persulfate. Chemical Engineering Journal 370, 19-26.
Gupta, S.M. and Tripathi, M. 2011. A review of TiO 2 nanoparticles. Chinese Science Bulletin 56(16), 1639.
Gurkan, Y.Y., Turkten, N., Hatipoglu, A. and Cinar, Z. 2012. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal 184, 113-124.
H. Jones, O., Voulvoulis, N. and Lester, J.N. 2005. Human pharmaceuticals in wastewater treatment processes. Critical reviews in environmental science and technology 35(4), 401-427.
Haarstrick, A., Kut, O.M. and Heinzle, E. 1996. TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environmental science technology 30(3), 817-824.
Hansen, P.-D. 2007. Risk assessment of emerging contaminants in aquatic systems. TrAC Trends in Analytical Chemistry 26(11), 1095-1099.
He, Y., Sutton, N.B., Rijnaarts, H.H. and Langenhoff, A.A. 2016. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental 182, 132-141.
Henkelman, G., Arnaldsson, A. and Jónsson, H. 2006. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 36(3), 354-360.
Hirakawa, T. and Nosaka, Y. 2002. Properties of O2•-and OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18(8), 3247-3254.
Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. 1995. Environmental applications of semiconductor photocatalysis. Chemical reviews 95(1), 69-96.
Hu, L., Flanders, P.M., Miller, P.L. and Strathmann, T.J. 2007. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water research 41(12), 2612-2626.
Hu, P., Guo, C., Zhang, Y., Lv, J., Zhang, Y. and Xu, J. 2019. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in north China. Frontiers of environmental science engineering 13(4), 56.
Huerta-Flores, A.M., Sánchez-Martínez, D., del Rocío Hernández-Romero, M., Zarazúa-Morín, M.E. and Torres-Martínez, L.M. 2019. Visible-light-driven BaBiO3 perovskite photocatalysts: Effect of physicochemical properties on the photoactivity towards water splitting and the removal of rhodamine B from aqueous systems. Journal of Photochemistry and Photobiology A: Chemistry 368, 70-77.
Huerta-Fontela, M., Galceran, M.T., Martin-Alonso, J. and Ventura, F. 2008. Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain. Sci Total Environ 397(1–3), 31-40.
Huerta-Fontela, M., Galceran, M.T. and Ventura, F. 2007. Ultraperformance liquid chromatography− tandem mass spectrometry analysis of stimulatory drugs of abuse in wastewater and surface waters. Analytical Chemistry 79(10), 3821-3829.
JIA, Q.-z., JIA, X.-c., Hui, C., TAO, J.-j. and REN, H.-y. 2017. The Reusable g-Fe2O3/SiO2/TiO2: Preparation and Photocatalytic Activity for the Degradation of Sulfamethazine in Water. DEStech Transactions on Environment, Energy and Earth Sciences (ese).
Jiang, J.-J., Lee, C.-L. and Fang, M.-D. 2014. Emerging organic contaminants in coastal waters: Anthropogenic impact, environmental release and ecological risk. Marine pollution bulletin 85(2), 391-399.
Jiang, J.-J., Lee, C.-L., Fang, M.-D., Tu, B.-W. and Liang, Y.-J. 2015. Impacts of emerging contaminants on surrounding aquatic environment from a youth festival. Environmental science technology 49(2), 792-799.
Juang, R.-S., Lin, S.-H. and Hsueh, P.-Y. 2010. Removal of binary azo dyes from water by UV-irradiated degradation in TiO2 suspensions. Journal of hazardous materials 182(1-3), 820-826.
Kim, C., Park, H.-j., Cha, S. and Yoon, J. 2013. Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method. Chemosphere 93(9), 2011-2015.
Kładna, A., Kruk, I., Michalska, T., Berczyński, P. and Aboul‐Enein, H.Y. 2011. Characterization of the superoxide anion radical scavenging activity by tetracycline antibiotics in aprotic media. Luminescence 26(6), 611-615.
Klavarioti, M., Mantzavinos, D. and Kassinos, D. 2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment international 35(2), 402-417.
Kresse, G. and Hafner, J. 1993a. Ab initio molecular dynamics for liquid metals. Physical Review B 47(1), 558.
Kresse, G. and Hafner, J. 1993b. Ab initio molecular dynamics for open-shell transition metals. Physical Review B 48(17), 13115.
Kresse, G. and Hafner, J. 1994. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 49(20), 14251.
Kresse, G. and Joubert, D. 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b 59(3), 1758.
Kuster, M., de Alda, M.J.L., Hernando, M.D., Petrovic, M., Martín-Alonso, J. and Barceló, D. 2008. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). Journal of hydrology 358(1-2), 112-123.
Lai, F.Y., Bruno, R., Leung, H.W., Thai, P.K., Ort, C., Carter, S., Thompson, K., Lam, P.K. and Mueller, J.F. 2013. Estimating daily and diurnal variations of illicit drug use in Hong Kong: a pilot study of using wastewater analysis in an Asian metropolitan city. Forensic science international 233(1-3), 126-132.
Lai, W.W.-P., Hsu, M.-H. and Lin, A.Y.-C. 2017. The role of bicarbonate anions in methotrexate degradation via UV/TiO2: Mechanisms, reactivity and increased toxicity. Water research 112, 157-166.
Li, C.-C., Wu, S.-T., Cha, T.-L., Sun, G.-H., Yu, D.-S. and Meng, E. 2019. A survey for ketamine abuse and its relation to the lower urinary tract symptoms in Taiwan. Scientific reports 9(1), 1-6.
Li, Y., Zhang, W., Niu, J. and Chen, Y. 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS nano 6(6), 5164-5173.
Lin, A.Y.-C., Lee, W.-N. and Wang, X.-H. 2014. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water. Water research 53, 351-360.
Lin, A.Y.-C., Wang, X.-H. and Lin, C.-F. 2010. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 81(5), 562-570.
Liu, H., Jia, Z., Ji, S., Zheng, Y., Li, M. and Yang, H. 2011. Synthesis of TiO2/SiO2@ Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catalysis Today 175(1), 293-298.
Liu, J., Yang, S., Wu, W., Tian, Q., Cui, S., Dai, Z., Ren, F., Xiao, X. and Jiang, C. 2015. 3D flowerlike α-Fe2O3@ TiO2 core–shell nanostructures: general synthesis and enhanced photocatalytic performance. ACS Sustainable Chemistry Engineering 3(11), 2975-2984.
Liu, J., Zhang, X., Zhong, Q., Li, J., Wu, H., Zhang, B., Jin, L., Tao, H.B. and Liu, B. 2020. Electrostatic self-assembly of a AgI/Bi 2 Ga 4 O 9 p–n junction photocatalyst for boosting superoxide radical generation. Journal of Materials Chemistry A 8(7), 4083-4090.
Liu, W., Li, Y., Liu, F., Jiang, W., Zhang, D. and Liang, J. 2019. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water research 151, 8-19.
Logofatu, C., Negrila, C.C., Ghita, R.V., Ungureanu, F., Cotirlan, C., Manea, C. and Lazarescu, M.F. 2011. Study of SiO2/Si interface by surface techniques. Crystalline silicon—properties and uses, 23-42.
Lua, A.C., Lin, H.R., Te Tseng, Y., Hu, A.R. and Yeh, P.C. 2003. Profiles of urine samples from participants at rave party in Taiwan: prevalence of ketamine and MDMA abuse. Forensic Science International 136(1-3), 47-51.
Mi, G., Gao, Y., Yan, H., Jin, X., Ye, E., Liu, S., Gong, Z., Yang, H. and Yang, Z. 2016. l-Scoulerine attenuates behavioural changes induced by methamphetamine in zebrafish and mice. Behavioural brain research 298, 97-104.
Miranda-García, N., Maldonado, M.I., Coronado, J. and Malato, S. 2010. Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in a pilot plant. Catalysis Today 151(1-2), 107-113.
Miranda-García, N., Suárez, S., Sánchez, B., Coronado, J., Malato, S. and Maldonado, M.I. 2011. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental 103(3-4), 294-301.
MOTOHASHI, N. and SAITO, Y. 1993. Competitive measurement of rate constants for hydroxyl radical reactions using radiolytic hydroxylation of benzoate. Chemical and pharmaceutical bulletin 41(10), 1842-1845.
Mwenesongole, E.M., Gautam, L., Hall, S.W., Waterhouse, J.W. and Cole, M.D. 2013. Simultaneous detection of controlled substances in waste water. Analytical Methods 5(13), 3248-3254.
Nilsen, E., Smalling, K.L., Ahrens, L., Gros, M., Miglioranza, K.S., Picó, Y. and Schoenfuss, H.L. 2019. Critical review: grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environmental toxicology and chemistry 38(1), 46-60.
Nosaka, Y. and Nosaka, A.Y. 2017. Generation and detection of reactive oxygen species in photocatalysis. Chemical reviews 117(17), 11302-11336.
Ohtsu, Y., Fukui, H., Kanda, T., Nakamura, K., Nakano, M., Nakata, O. and Fujiyama, Y. 1987. Structures and chromatographic characteristics of capsule-type silica gels coated with hydrophobic polymers in reversed-phase liquid chromatography. Chromatographia 24(1), 380-384.
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. and Fiolhais, C. 1992. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B 46(11), 6671.
Perdew, J.P. and Wang, Y. 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Physical review B 45(23), 13244.
Prieto-Rodriguez, L., Miralles-Cuevas, S., Oller, I., Agüera, A., Puma, G.L. and Malato, S. 2012. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of hazardous materials 211, 131-137.
Samaras, V.G., Stasinakis, A.S., Mamais, D., Thomaidis, N.S. and Lekkas, T.D. 2013. Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. Journal of hazardous materials 244, 259-267.
Sanville, E., Kenny, S.D., Smith, R. and Henkelman, G. 2007. Improved grid‐based algorithm for Bader charge allocation. Journal of computational chemistry 28(5), 899-908.
Sin, J.-C., Lam, S.-M., Mohamed, A.R. and Lee, K.-T. 2012. Degrading Endocrine Disrupting Chemicals from Wastewater by TiO? Photocatalysis: A Review. International Journal of Photoenergy 2012.
Sodré, F.F., Locatelli, M.A.F. and Jardim, W.F. 2010. Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water, Air, and Soil Pollution 206(1-4), 57-67.
Sousa, M., Gonçalves, C., Vilar, V.J., Boaventura, R.A. and Alpendurada, M. 2012. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chemical Engineering Journal 198, 301-309.
Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z. and Yu, G. 2015. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerging Contaminants 1(1), 14-24.
Talukdar, S. and Dutta, R.K. 2016. A mechanistic approach for superoxide radicals and singlet oxygen mediated enhanced photocatalytic dye degradation by selenium doped ZnS nanoparticles. RSC advances 6(2), 928-936.
Tang, W., Sanville, E. and Henkelman, G. 2009. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter 21(8), 084204.
Teijon, G., Candela, L., Tamoh, K., Molina-Díaz, A. and Fernández-Alba, A. 2010. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Science of the Total Environment 408(17), 3584-3595.
Thøgersen, A., Selj, J.H. and Marstein, E.S. 2012. Oxidation effects on graded porous silicon anti-reflection coatings. Journal of The Electrochemical Society 159(5), D276-D281.
Thiruvenkatachari, R., Vigneswaran, S. and Moon, I.S. 2008. A review on UV/TiO 2 photocatalytic oxidation process (Journal Review). Korean Journal of Chemical Engineering 25(1), 64-72.
Van der Aa, M., Bijlsma, L., Emke, E., Dijkman, E., Van Nuijs, A.L., Van de Ven, B., Hernández, F., Versteegh, A. and de Voogt, P. 2013. Risk assessment for drugs of abuse in the Dutch watercycle. Water research 47(5), 1848-1857.
Vione, D., Bagnus, D., Maurino, V. and Minero, C. 2010. Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water. Environmental Chemistry Letters 8(2), 193-198.
Wang, Z., Han, S., Cai, M., Du, P., Zhang, Z. and Li, X. 2020. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community. Water Research 174, 115585.
Wang, Z., Xu, Z. and Li, X. 2018. Biodegradation of methamphetamine and ketamine in aquatic ecosystem and associated shift in bacterial community. Journal of hazardous materials 359, 356-364.
Watson, S., Beydoun, D. and Amal, R. 2002. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. Journal of Photochemistry and Photobiology A: Chemistry 148(1-3), 303-313.
Xiang, D.F., Tan, X.S., Hang, Q.W., Tang, W.X., Wu, B.-M. and Mak, T.C. 1998. Crystal structure and properties of a new five-coordinate manganese superoxide dismutase mimic. Inorganica chimica acta 277(1), 21-25.
Yadav, M.K., Short, M.D., Aryal, R., Gerber, C., van den Akker, B. and Saint, C.P. 2017. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment. Water research 124, 713-727.
Yang, C., You, X., Cheng, J., Zheng, H. and Chen, Y. 2017. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Applied Catalysis B: Environmental 200, 673-680.
Yang, G.C., Yen, C.-H. and Wang, C.-L. 2014. Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. Journal of hazardous materials 277, 53-61.
Yang, H., Li, G., An, T., Gao, Y. and Fu, J. 2010. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs. Catalysis Today 153(3-4), 200-207.
Yang, S.-L., Tzeng, S., Tai, S.-F. and Ku, Y.-C. 2020. Illegal Drug Use Among Adolescents in Schools and Facilities: 3-Year Surveys in Taiwan. Asian Journal of Criminology 15(1), 45-63.
Yang, X., Flowers, R.C., Weinberg, H.S. and Singer, P.C. 2011. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water research 45(16), 5218-5228.
Ye, F. and Ohmori, A. 2002. The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings. Surface and Coatings Technology 160(1), 62-67.
Ye, F., Ohmori, A., Nakata, K. and Tsumura, T. 2007. Structures and Photocatalytic Performance of TiO2-FeTiO3 Coatings Prepared by Plasma Spraying Technique. Journal of High Temperature Society 33(6), 300-305.
Yin, L., Shen, Z., Niu, J., Chen, J. and Duan, Y. 2010. Degradation of pentachlorophenol and 2, 4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis. Environmental science technology 44(23), 9117-9122.
Yu, X., Liu, S. and Yu, J. 2011. Superparamagnetic γ-Fe2O3@ SiO2@ TiO2 composite microspheres with superior photocatalytic properties. Applied Catalysis B: Environmental 104(1-2), 12-20.
Yurdakal, S., Loddo, V., Augugliaro, V., Berber, H., Palmisano, G. and Palmisano, L. 2007. Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics. Catalysis Today 129(1-2), 9-15.
Zhang, S., Yi, J., Chen, J., Yin, Z., Tang, T., Wei, W., Cao, S. and Xu, H. 2020. Spatially confined Fe2O3 in hierarchical SiO2@ TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chemical Engineering Journal 380, 122583.
Zhang, T., Ding, Y. and Tang, H. 2015. Generation of singlet oxygen over Bi (V)/Bi (III) composite and its use for oxidative degradation of organic pollutants. Chemical Engineering Journal 264, 681-689.
Zhang, X., Wu, F., Wu, X., Chen, P. and Deng, N. 2008. Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials 157(2-3), 300-307.
Zhang, Y., Zhang, T., Guo, C., Lv, J., Hua, Z., Hou, S., Zhang, Y., Meng, W. and Xu, J. 2017. Drugs of abuse and their metabolites in the urban rivers of Beijing, China: Occurrence, distribution, and potential environmental risk. Science of the Total Environment 579, 305-313.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77059-
dc.description.abstract現代藥物使用氾濫,致使環境水體內亦開始有藥物之存在,其難降解之特性對生態環境所帶來之潛在風險使得環境水體內之藥物成為備受關注之議題。在眾多的藥物中氯胺酮(俗稱K他命)由於濫用問題且於環境中相對穩定,更加受到科學家之重視。然而早期所設計之較為傳統的二級污水處理廠無法有效去除這類新興污染物,因此,發展出不同的高級氧化處理程序以去除此類污染物。其中,光催化法被視為淨化水質最有前景的方法,然而所使用之催化劑無法有效回收,限縮其實際應用性。本研究的主要目標是利用一可回收之光催化劑降解水中的氯胺酮物質,並進一步探討其反應機制。此催化劑為一核殼結構的材料,以Fe3O4為核心,並由SiO2包覆,其為中間層,TiO2 參雜於SiO2上(TiO2/SiO2@Fe3O4),亦簡稱之為TSF。
TSF的材料結構與形狀利用X–射線繞射分析(XRD),掃描電子顯微鏡(SEM),高解像穿透式電子顯微鏡(HRTEM),比表面積分析儀(BET)進行分析。本研究的光催化反應以模擬太陽光反應器做為光源(700 W/m2, 300–800 wavelength),TSF在最佳反應條件下([ketamine] = 0.3 μM, [TSF] = 100 mg/L, solution pH = 9), 擁有最快的氯胺酮降解速率 (pseudo-first-order rate constant = 0.1917 min–1), 其降解速率略優於TiO2。此外,TSF具磁性之特徵,使其能以磁鐵進行簡易回收再多次利用,批次反應的回收率高達85%,而重複使用之TSF降解氯胺酮的速率並無明顯的減少(rate constant of 1st : 0.1098 min–1 and 2nd : 0.1095 min–1).
系統反應機制則顯示超氧自由基 (•O2–)為氯胺酮降解過程的主要反應物種。TSF材料的價帶與導帶分別是1.89 eV和–1.91 eV,此區間包含了超氧自由基(–0.33 eV)和單氧自由基(+0.65 eV) 在pH7條件下的氧化還原電位,利於此兩種活性物種的生成;然而此區間並不包含氫氧自由基的氧化還原電位(+2.32 eV),故不利氫氧自由基生成。反應在酸性或鹼性條件下,會消耗超氧自由基,抑制氯胺酮的降解效率;接著根據probe試驗,發現單氧自由基的貢獻可被忽略,超氧自由基與氫氧自由基對降解氯胺酮的貢獻比例為93:7;再透過曝氣實驗探討氧的來源,發現無論曝氮氣或是氧氣,氯胺酮之降解效率皆無明顯的改變,故排除溶氧作為氧的來源之可能性;後利用XPS分析表面氧反應前後之差異,顯示於反應後氧氣有消耗的情況。綜合上述之實驗,證實超氧自由基為本研究中重要的反應物種且其來源為材料表面的晶格氧。最後根據超氧自由基的親核性特性,利用DFT模擬氯胺酮中各原子的電子密度,透過攻擊電子密度最低的位置推測副產物,並利用UHPLC–QTOF–MS分析是否產生該副產物,再次驗證超氧自由基於此反應的重要性。本研究在環境應用上相當具有潛力,本實驗中總有機碳的去除率高達80%,且處理過程中毒性極低(小於0.9毒性單位),且研究中所發現的副產物亦會在反應後全部去除,為一環境友善之系統。
zh_TW
dc.description.abstractThe existence of pharmaceuticals in aquatic environments has become a critical issue because they are recalcitrant and pose a potential risk to ecosystems. Among pharmaceuticals, ketamine has received increasing attention because of its overuse in daily life and its persistence in aquatic matrices. Because conventional wastewater treatment processes cannot effectively remove these pharmaceuticals, various advanced oxidation processes have been developed and investigated, and photocatalysis has been considered a promising method for water purification. However, photocatalysts are typically difficult to recycle, which hinders their application in water treatment. The aim of this work is to develop a magnetic photocatalyst with a core-shell structure composed of a magnetite core and silica dioxide layer doped with titanium dioxide (TiO2/SiO2@Fe3O4, TSF) for ketamine removal; the associated photocatalytic degradation mechanism is also investigated and elucidated.
The structure and morphology of the TSF photocatalyst has been well characterized by utilizing XRD, SEM, HRTEM and BET methods. In the photocatalytic experiment, by utilizing simulated solar irradiation (700 W/m2, 300–800 wavelength) as the light source under optimum experimental conditions ([ketamine] = 0.3 μM, [TSF] = 100 mg/L, solution pH = 9), the TSF photocatalyst possesses higher ketamine degradation efficiency (pseudo-first-order rate constant = 0.1917 min–1) compared with that of commercial TiO2 (P25). Additionally, the magnetic TSF photocatalyst can be collected and reused several times, and the recovery can reach up to 85% in each batch. Furthermore, the efficiency of the catalyst after repeated use shows no significant reduction (rate constant of 1st: 0.1098 min–1 and 2nd: 0.1095 min–1).
Superoxide radicals (•O2–) are likely the dominant reactive species for ketamine degradation. The valence band and conduction band of TSF are 1.89 eV and –1.91 eV, respectively. This band gap includes the formation intervals of •O2– (–0.33 eV) and singlet oxygen (1O2) (+0.65 eV), while excluding that of hydroxyl radicals (•OH) (+2.32 eV), at pH 7. In addition, under acidic or basic conditions, •O2– will be consumed less than when under neutral conditions. With the probe test, the contribution of 1O2 can be ignored, and the contribution ratio of •O2– and •OH for ketamine degradation is 93% and 7%, respectively. According to a gas purge experiment and XPS data, purging with both N2 and O2 does not significantly enhance or inhibit ketamine removal efficiency, while the XPS results show the O2 consumption from the material surface during the reaction. Moreover, due to the nucleophilic property of •O2–, the DFT calculation and UHPLC–QTOF–MS byproduct analysis help to determine whether the main byproduct is certainly generated by a •O2– attack. The entire ketamine removal process in this study has potential for use in environmental applications because of its high TOC removal efficiency (up to 80%) and low Microtox® acute toxicity (lower than 0.9 toxicity units). All byproducts are removed (no detection signal) after the reaction, thus showing that the TSF photocatalyst is a promising material to use for water purification.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:45:03Z (GMT). No. of bitstreams: 1
U0001-0807202009542100.pdf: 4204461 bytes, checksum: 78b7adf9ec56a035982841686c6cdfda (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContent
致謝 i
中文摘要 iii
Abstract v
List of figures xi
List of Tables xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation, hypothesis and objective 3
Chapter 2 Literature review 7
2.1 Ketamine 7
2.1.1 Use of ketamine 7
2.1.2 Occurrence and the impact of ketamine on aquatic environments 8
2.2 TiO2 photocatalysis 11
2.3 Magnetic TiO2 Photocatalysis 13
2.4 Reactive oxygen species (ROS) 15
Chapter 3 Materials and methods 17
3.1 Chemicals and standards 17
3.2 Photocatalyst preparation 17
3.2.1 TiO2@Fe3O4(TF) preparation 17
3.2.2 SiO2@Fe3O4 (SF) reparation 18
3.2.3 TiO2/SiO2@Fe3O4 (TSF) preparation 18
3.3 Physicochemical properties of the photocatalyst 19
3.4 Photocatalytic experiment 20
3.4.1 Total organic carbon analysis 23
3.4.2 Microtox® toxicity measurements 23
3.5 Reactive oxygen species (ROS) assay 24
3.6 Ketamine and transformation byproduct analysis 27
3.6.1 Ketamine analysis by LC–MS/MS 27
3.6.2 Ketamine byproduct analysis by LC–MS/MS 28
3.6.3 Unknown byproduct identification by UHPLC–QTOF–MS 29
3.7 Density functional theory (DFT) calculation for ketamine 31
Chapter 4 Results and discussion 35
4.1 Physicochemical characterization of TiO2/SiO2@Fe3O4 and TiO2@Fe3O4 35
4.2 Operation parameters in TSF system 39
4.2.1 Effect of the TSF dose on ketamine removal 42
4.2.2 Effect of solution pH on ketamine removal 43
4.2.3 TSF reusability test 45
4.3 Mechanism of ketamine degradation in the TSF/solar system 47
4.3.1 Impact of band gap energy on ROS generation 47
4.3.2 XPS analysis for the surface element variation of TSF 50
4.3.3 Contribution of ROS (•OH, 1O2, •O2–) to ketamine removal 52
4.4 Byproduct formation during ketamine degradation 60
4.5 TOC mineralization and change in toxicity 64
Chapter 5 Conclusions and suggestions 75
5.1 Conclusions 75
5.2 Suggestions 77
Chapter 6 References 79
Chapter 7 Appendix 91
dc.language.isoen
dc.subject回收zh_TW
dc.subject氯胺酮zh_TW
dc.subjectTiO2/SiO2@Fe3O4 (TSF)zh_TW
dc.subject降解副產物zh_TW
dc.subject密度範涵理論zh_TW
dc.subject超氧自由基zh_TW
dc.subjectreusabilityen
dc.subjectTiO2/SiO2@Fe3O4 (TSF)en
dc.subjectketamineen
dc.subjectsuperoxide radicalen
dc.subjectbyproducten
dc.subjectdensity functional theoryen
dc.titleTiO2/SiO2/Fe3O4(TSF)光催化降解水中氯胺酮之反應性及機制探討:超氧自由基之貢獻zh_TW
dc.titleThe reactivity and mechanism of TiO2/SiO2@Fe3O4 (TSF) core-shell structure as a photocatalyst for removing ketamine in water: contribution of superoxide radicalen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林逸彬(Yi-Pin Lin),吳嘉文(Chia-Wen Wu),席行正(H-Ch Si),賴威博(Wei-Po Lai)
dc.subject.keywordTiO2/SiO2@Fe3O4 (TSF),氯胺酮,回收,超氧自由基,密度範涵理論,降解副產物,zh_TW
dc.subject.keywordTiO2/SiO2@Fe3O4 (TSF),ketamine,reusability,superoxide radical,density functional theory,byproduct,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202001377
dc.rights.note未授權
dc.date.accepted2020-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0807202009542100.pdf
  未授權公開取用
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved