Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77056
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許源浴(Yuan-Yih Hsu)
dc.contributor.authorTing-Hsuan Chienen
dc.contributor.author簡廷軒zh_TW
dc.date.accessioned2021-07-10T21:44:57Z-
dc.date.available2021-07-10T21:44:57Z-
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-10
dc.identifier.citation[1] Global Wind Energy Council (GWEC), “Global Wind Report 2019,” http://gwec.net/
[2] 經濟部能源局, “風力發電4年推動計畫,” 中華民國106年8月。https://www.moeaboe.gov.tw/
[3] J. Morren, S. W. H. de Haan, W. L. Kling and J. A. Ferreira, 'Wind turbines emulating inertia and supporting primary frequency control,' IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 433-434, Feb. 2006, doi: 10.1109/TPWRS.2005.861956.
[4] G. Ramtharan, J. B. Ekanayake and N. Jenkins, 'Frequency support from doubly fed induction generator wind turbines,' IET Renewable Power Generation, vol. 1, no. 1, pp. 3-9, March 2007, doi: 10.1049/iet-rpg:20060019.
[5] J. M. Mauricio, A. Marano, A. Gomez-Exposito and J. L. Martinez Ramos, 'Frequency Regulation Contribution Through Variable-Speed Wind Energy Conversion Systems,' IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 173-180, Feb. 2009, doi: 10.1109/TPWRS.2008.2009398.
[6] M. Shahabi, M. R. Haghifam, M. Mohamadian and S. A. Nabavi-Niaki, 'Microgrid Dynamic Performance Improvement Using a Doubly Fed Induction Wind Generator,' IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 137-145, March 2009, doi: 10.1109/TEC.2008.2006556.
[7] M. Kayikci and J. V. Milanovic, 'Dynamic Contribution of DFIG-Based Wind Plants to System Frequency Disturbances,' IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 859-867, May 2009, doi: 10.1109/TPWRS.2009.2016062.
[8] K. V. Vidyanandan and N. Senroy, 'Primary frequency regulation by deloaded wind turbines using variable droop,' IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 837-846, May 2013, doi: 10.1109/TPWRS.2012.2208233.
[9] Y. Tan, L. Meegahapola and K. M. Muttaqi, 'A Suboptimal Power-Point-Tracking-Based Primary Frequency Response Strategy for DFIGs in Hybrid Remote Area Power Supply Systems,' IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 93-105, March 2016, doi: 10.1109/TEC.2015.2476827.
[10] J. Van de Vyver, J. D. M. De Kooning, B. Meersman, L. Vandevelde and T. L. Vandoorn, 'Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines,' IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1129-1138, March 2016, doi: 10.1109/TPWRS.2015.2417758.
[11] M. Hwang, E. Muljadi, J. W. Park, P. Sørensen and Y. C. Kang, 'Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator,' IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 924-933, July 2016, doi: 10.1109/TSTE.2015.2508792.
[12] J. Lee, G. Jang, E. Muljadi, F. Blaabjerg, Z. Chen and Y. Cheol Kang, 'Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant,' IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 1068-1079, Sept. 2016, doi: 10.1109/TEC.2016.2532366.
[13] V. Gholamrezaie, M. G. Dozein, H. Monsef and B. Wu, 'An Optimal Frequency Control Method Through a Dynamic Load Frequency Control (LFC) Model Incorporating Wind Farm,' IEEE Systems Journal, vol. 12, no. 1, pp. 392-401, March 2018, doi: 10.1109/JSYST.2016.2563979.
[14] S. Q. Ali and H. M. Hasanien, “Frequency Control of Isolated Network with Wind and Diesel Generators by Using Adaptive Artificial Neural Network Controller,” International Review of Automatic Control, vol. 5, pp. 179-186, March 2012.
[15] F. Hafiz and A. Abdennour, “An adaptive neuro-fuzzy inertia controller for variable-speed wind turbines,” Renewable Energy, vol. 92, pp. 136-146, July 2016, doi.org/10.1016/j.renene.2016.01.100.
[16] P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994.
[17] I. C. Report, 'Dynamic Models for Steam and Hydro Turbines in Power System Studies,' IEEE Transactions on Power Apparatus and Systems, vol. PAS-92, no. 6, pp. 1904-1915, Nov. 1973, doi: 10.1109/TPAS.1973.293570.
[18] P. M. Anderson and A.A. Fouad, Power Systems Control and Stability, 2nd ed. Wiley-IEEE Press, 2002.
[19] A. R. Bergen and V. Vittal, Power Systems Analysis, 2nd ed. Pearson Prentice Hall, 1999.
[20] 台電電力調度處調度模擬組, “電力品質控制成果報告,” 中華民國106年1月。
[21] Z. Wu et al., 'State-of-the-art review on frequency response of wind power plants in power systems,' Journal of Modern Power Systems and Clean Energy, vol. 6, no. 1, pp. 1-16, January 2018, doi: 10.1007/s40565-017-0315-y.
[22] R. Pena, J. C. Clare and G. M. Asher, 'Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,' IEE Proceedings - Electric Power Applications, vol. 143, no. 3, pp. 231-241, May 1996, doi: 10.1049/ip-epa:19960288.
[23] 翁永財, “應用於雙饋式感應發電機之虛功率控制策略及轉子側電流控制器設計,” 臺灣大學電機所博士論文, 2015.
[24] Martin O.L. Hansen, Aerodynamics of Wind Turbines, 2nd ed. Earthscan, Inc, 2007.
[25] C. Schauder and H. Mehta, 'Vector analysis and control of advanced static VAr compensators,' IEE Proceedings C - Generation, Transmission and Distribution, vol. 140, no. 4, pp. 299-306, July 1993, doi: 10.1049/ip-c.1993.0044.
[26] 梁國堂, “靜態同步補償器控制器參數之設計,” 臺灣大學電機所碩士論文, 2008.
[27] N. Mohan, T. M. Undeland, et al., Power Electronics. John Wiley and Sons, Inc, 2003.
[28] C.M. Ong, Dynamic Simulation of Electric Machinery Using Matlab/Simulink. Pearson Education Taiwan Ltd., 2005.
[29] 簡于翔, “雙饋式感應風力發電機轉子側電流調節器參數之設計,” 臺灣大學電機所碩士論文, 2016.
[30] 陳偉倫, “風力-感應發電機系統之電壓及頻率調整器設計,” 臺灣大學電機所博士論文, 2006.
[31] 劉昌煥, “交流電機控制,” 東華書局, 2008.
[32] 楊智翔, “用於改善微電網頻率之雙饋式感應風力發電機粒子群優法自調式控制器,” 臺灣大學電機所碩士論文, 2018.
[33] 陳翊瑋, “雙饋式感應風力發電機之粒子群優法自調式頻率控制器設計,” 臺灣大學電機所碩士論文, 2019.
[34] 李泓希, “獨立系統頻控效能指標計算之頻率誤差控制目標研擬,” 國立中山大學電機工程學系碩士論文, 2010.
[35] 台灣電力公司, “電力系統運轉操作章則彙編”, 2020.
[36] Z. -. Zhang, Y. -. Sun, J. Lin and G. -. Li, 'Coordinated frequency regulation by doubly fed induction generator-based wind power plants,' IET Renewable Power Generation, vol. 6, no. 1, pp. 38-47, January 2012, doi: 10.1049/iet-rpg.2010.0208.
[37] 張斐章、張麗秋, “類神經網路導論:原理與應用,” 第二版, 臺中市: 滄海書局, 2015.
[38] Egm4313.s12 (Prof. Loc Vu-Quoc), “Biological neuron model,” Wikipedia.
https://en.wikipedia.org/wiki/Biological_neuron_model
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77056-
dc.description.abstract本論文主要目的在於設計雙饋式感應風力發電機之類神經網路輔助頻率控制器,以改善區域電網於孤島穩態運轉時遭受到一大型負載變動量之頻率響應特性,使系統頻率符合本論文之法規標準與限制條件,也避免觸碰到低頻電驛,造成當地用戶停電。
首先推導區域電網系統頻率控制非線性數學模型,並加入考慮風機線上機組數量,以表示當風機機組故障或檢修時,其慣性將會改變,以及對於區域電網系統之供電能力與頻率響應造成的影響。
接著利用非線性數學模型尋找類神經網路輔助頻率控制器之訓練樣本資料,將其訓練後並且應用於風機之輔助頻率控制器,並且與原先固定不變之固定增益'K' _'PD' 比較頻率響應,驗證類神經網路輔助頻率控制器可以因應區域電網系統參數改變。
本論文藉由MATLAB®/Simulink軟體進行模擬,並以台灣彰化海濱區域電網之非線性數學模型為例,驗證所提出之類神經網路輔助頻率控制器的有效性。
zh_TW
dc.description.abstractIn order to achieve better dynamic frequency response of a local power system, a supplementary frequency controller for a wind farm with doubly fed induction generator (DFIG) is designed using artificial neural network (ANN) in this thesis. Under-freuqnecy load shedding caused by a sudden power unbalance in the local power system can be avoided by the proposed supplementary freuqnecy controller.
First, a nonlinear model for the local power system which takes the number of wind generator on-line, wind speed, and load disturbance into account is derived. The dynamic frequency response of local power system under different number of wind generators, different wind speeds, and different load disturbances are analyzed.
Next, the training patterns for the ANN are created using dynamic simulations-based on the nonlinear model for the local power system. The connection weights for the ANN are trained using these training patterns.
In order to validate the proposed ANN based supplementary frequency controller, the frequency responses from fixed-gain controller are compared with those from the proposed ANN based supplementary frequency controller under different number of wind generators, wind speeds, and load disturbances.
In order to demonstrate the effectiveness of the fixed-gain frequency controller and the proposed ANN based supplementary frequency controller, digital simulations using MATLAB®/Simulink are performed on a local power system in Changhua, Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:44:57Z (GMT). No. of bitstreams: 1
U0001-0907202017072800.pdf: 24487641 bytes, checksum: 421857170b69ff2b99594a27dbd5bf1c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XII
符號索引 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.3 研究目的與方法 6
1.4 論文內容概述 7
第二章 區域電網架構與頻率控制數學模型 8
2.1 前言 8
2.2 區域電網之同步發電機頻率控制數學模型 11
2.3 區域電網之雙饋式感應風力發電機頻率控制數學模型 20
2.3.1 風力發電原理 20
2.3.2 系統側轉換器(Grid Side Converter, GSC)分析 27
2.3.3 轉子側轉換器(Rotor Side Converter, RSC)分析 37
2.3.4 雙饋式感應風力發電機之輔助頻率控制方塊圖 50
2.4 區域電網頻率控制非線性數學模型 57
第三章 固定增益輔助頻率控制器設計 61
3.1 前言 61
3.2 台電頻率運轉標準與低頻卸載方式 63
3.3 一階常微分方程式數值解法 65
3.4 輔助頻率控制器固定增益'K' _'PD' 之選定 67
3.4.1 負載變動量'∆' 'P' _'Load' 對系統頻率之影響 72
3.4.2 風機線上機組數量(DFIG online number)對系統頻率之影響 80
3.4.3 風速'V' _'w' 對系統頻率之影響 85
3.4.4 最佳固定增益'K' _'PD' 之選定(Base case之選定) 100
第四章 類神經網路輔助頻率控制器設計 101
4.1 前言 101
4.2 類神經網路 102
4.2.1 生物神經元 102
4.2.2 人工神經元 103
4.2.3 類神經網路架構[37] 106
4.2.4 類神經網路學習方式 109
4.3 倒傳遞類神經網路 110
4.3.1 倒傳遞神經網路架構 110
4.3.2 倒傳遞學習演算法 111
4.3.3 倒傳遞網路之參數選定 115
4.4 類神經網路輔助頻率控制器之設計 117
4.4.1 類神經網路輔助頻率控制器之參數選定 118
4.4.2 類神經網路輔助頻率控制器之訓練與測試結果 120
第五章 模擬結果與分析 122
5.1 前言 122
5.2 模擬架構 122
5.3 有無輔助頻率控制器對於區域電網系統之影響 126
5.4 類神經網路輔助頻率控制器之動態特性 130
5.4.1 負載變動量'∆' 'P' _'Load' 改變 131
5.4.2 風機線上機組數量(DFIG online number)'N' _'WG' 改變 148
5.4.3 風速'V' _'w' 改變 161
5.4.4 符合限制條件下之可用運轉點範圍 175
第六章 結論與未來研究方向 180
6.1 結論 180
6.2 未來研究方向 182
參考文獻 183
dc.language.isozh-TW
dc.subject風機線上機組數量zh_TW
dc.subject類神經網路輔助頻率控制器zh_TW
dc.subject雙饋式感應風力發電機zh_TW
dc.subject風力發電zh_TW
dc.subject低頻電驛zh_TW
dc.subject類神經網路zh_TW
dc.subject輔助頻率控制器zh_TW
dc.subjectUnder-frequency relayen
dc.subjectWind power generationen
dc.subjectDoubly fed induction generatoren
dc.subjectDFIG online numberen
dc.subjectSupplementary frequency controlleren
dc.subjectArtificial neural networken
dc.subjectANN Supplementary frequency controlleren
dc.title利用類神經網路設計雙饋式感應風力發電機之輔助頻率控制器zh_TW
dc.titleDesign of a Supplementary Frequency Controller for a DFIG Wind Farm using Artificial Neural Networken
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張忠良(Zhong-Liang Zhang),吳進忠(Chin-Chung Wu),蒲冠志(Guan-Chih Pu),劉運鴻(Yun-Hong Liu)
dc.subject.keyword風力發電,雙饋式感應風力發電機,風機線上機組數量,輔助頻率控制器,低頻電驛,類神經網路,類神經網路輔助頻率控制器,zh_TW
dc.subject.keywordWind power generation,Doubly fed induction generator,DFIG online number,Supplementary frequency controller,Under-frequency relay,Artificial neural network,ANN Supplementary frequency controller,en
dc.relation.page186
dc.identifier.doi10.6342/NTU202001417
dc.rights.note未授權
dc.date.accepted2020-07-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-0907202017072800.pdf
  未授權公開取用
23.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved