請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77039完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳平(Richard P. Cheng) | |
| dc.contributor.author | Cheng-Hsin Huang | en |
| dc.contributor.author | 黃正心 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:44:15Z | - |
| dc.date.available | 2021-07-10T21:44:15Z | - |
| dc.date.copyright | 2020-07-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-20 | |
| dc.identifier.citation | 1.Hobohm, U.; Scharf, M.; Schneider, R.; Sander, C. Selection of representative protein data sets. Protein Sci. 1992, 1, 409-417. 2.Hobohm, U.; Sander, C. Enlarged representative set of protein structures. Protein Sci. 1994, 3, 522-524. 3.Griep, S.; Hobohm, U. PDBselect 1992-2009 and PDBfilter-select. Nucleic Acids Res. 2010, 38, D318-D319. 4.Bartzokis, G.; Lu, P. H.; Mintz, J. Human brain myelination and amyloid β deposition in Alzheimer’s disease. Alzheimer's Dement. 2007, 3, 122-125. 5.Hardy, J.; Duff, K. Amyloid deposition as the central event in the etiology and pathogenesis of Alzheimer’s disease. Trends Pharmacol. Sci. 1991, 12, 383-388. 6.Scherzinger, E.; Lurz, R.; Turmaine, M.; Mangiarini, L.; Hollenbach, B.; Hasenbank, R.; Bates, G. P.; Davies, S. W.; Lehrach, H.; Wanker, E. E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 1997, 90, 549-558. 7.Mastaglia, F. L.; Johnsen, R. D.; Byrnes, M. L.; Kakulas, B. A. Prevalence of amyloid-β deposition in the cerebral cortex in Parkinson's disease. Mov. Disord. 2003, 18, 81-86. 8.Brent Irvine, G.; El-Agnaf, O.; M Shankar, G.; Walsh, D. Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol. Med. 2008, 14, 451-464. 9.Greene, W. C.; Peterlin, B. M. Charting HIV's remarkable voyage through the cell: basic science as a passport to future therapy. Nat. Med. 2002, 8, 673-680. 10.Sibanda, B. L.; Blundell, T. L.; Thornton, J. M. Conformation of β-hairpins in protein structures: a systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J. Mol. Biol. 1989, 206, 759-777. 11.Stanger, H. E.; Syud, F. A.; Espinosa, J. F.; Giriat, I.; Muir, T.; Gellman, S. H. Length-dependent stability and strand length limits in antiparallel β-sheet secondary structure. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 12015. 12.Kim, C. A.; Berg, J. M. Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 1993, 362, 267-270. 13.Minor, D. L.; Kim, P. S. Measurement of the β-sheet-forming propensities of amino acids. Nature 1994, 367, 660-663. 14.Smith, C. K.; Withka, J. M.; Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 1994, 33, 5510-5517. 15.Syud, F. A.; Espinosa, J. F.; Gellman, S. H. NMR-based quantification of β-sheet populations in aqueous solution through use of reference peptides for the folded and unfolded states. J. Am. Chem. Soc. 1999, 121, 11577-11578. 16.Syud, F. A.; Stanger, H. E.; Gellman, S. H. Interstrand side chain-side chain interactions in a designed β-hairpin: significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-8677. 17.Espinosa, J. F.; Muñoz, V.; Gellman, S. H. Interplay between hydrophobic cluster and loop propensity in β-hairpin formation. J. Mol. Biol. 2001, 306, 397-402. 18.Ciani, B.; Jourdan, M.; Searle, M. S. Stabilization of β-hairpin peptides by salt bridges: role of preorganization in the energetic contribution of weak interactions. J. Am. Chem. Soc. 2003, 125, 9038-9047. 19.Lewis, P. N.; Momany, F. A.; Scheraga, H. A. Chain reversals in proteins. Biochim. Biophys. Acta 1973, 303, 211-229. 20.Chou, P. Y.; Fasman, G. D. β-turns in proteins. J. Mol. Biol. 1977, 115, 135-175. 21.Sibanda, B. L.; Thornton, J. M. β-Hairpin families in globular proteins. Nature 1985, 316, 170-174. 22.Wilmot, C. M.; Thornton, J. M. Analysis and prediction of the different types of β-turn in proteins. J. Mol. Biol. 1988, 203, 221-232. 23.Smith, C. K.; Regan, L. Construction and design of β-sheets. Acc. Chem. Res. 1997, 30, 153-161. 24.Chou, P. Y.; Fasman, G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 1974, 13, 211-222. 25.Cootes, A. P.; Curmi, P. M. G.; Cunningham, R.; Donnelly, C.; Torda, A. E. The dependence of amino acid pair correlations on structural environment. Proteins 1998, 32, 175-189. 26.Searle, M. S.; Griffiths-Jones, S. R.; Skinner-Smith, H. Energetics of weak interactions in a β-hairpin peptide: electrostatic and hydrophobic contributions to stability from lysine salt bridges. J. Am. Chem. Soc. 1999, 121, 11615-11620. 27.Paliwal, S.; Geib, S.; Wilcox, C. S. Molecular torsion balance for weak molecular recognition forces. effects of 'Tilted-T' edge-to-face aromatic interactions on conformational selection and solid-state structure. J. Am. Chem. Soc. 1994, 116, 4497-4498. 28.Hughes, R. M.; Benshoff, M. L.; Waters, M. L. Effects of chain length and N-methylation on a cation–π interaction in a β-hairpin peptide. Chem. Eur. J. 2007, 13, 5753-5764. 29.Tatko, C. D.; Waters, M. L. The geometry and efficacy of cation–π interactions in a diagonal position of a designed β-hairpin. Protein Sci. 2003, 12, 2443-2452. 30.Tatko, C. D.; Waters, M. L. Selective aromatic interactions in β-hairpin peptides. J. Am. Chem. Soc. 2002, 124, 9372-9373. 31.Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Elongation of the BH8 β-hairpin peptide: electrostatic interactions in β-hairpin formation and stability. Protein Sci. 2001, 10, 1381-1392. 32.Kuo, H.-T.; Fang, C.-J.; Tsai, H.-Y.; Yang, M.-F.; Chang, H.-C.; Liu, S.-L.; Kuo, L.-H.; Wang, W.-R.; Yang, P.-A.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 2013, 52, 9212-9222. 33.de Alba, E.; Blanco, F. J.; Jiménez, M. A.; Rico, M.; Nieto, J. L. Interactions responsible for the pH dependence of the β-hairpin conformational population formed by a designed linear peptide. Eur. J. Biochem. 1995, 233, 283-292. 34.Merkel, J. S.; Sturtevant, J. M.; Regan, L. Sidechain interactions in parallel β-sheets: the energetics of cross-strand pairings. Structure 1999, 7, 1333-1343. 35.Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. De novo design and structural analysis of a model β-hairpin peptide system. Nat. Struct. Mol. Biol. 1996, 3, 604-612. 36.Gellman, S. H. Minimal model systems for β-sheet secondary structure in proteins. Curr. Opin. Chem. Biol. 1998, 2, 717-725. 37.Chung, Y. J.; Christianson, L. A.; Stanger, H. E.; Powell, D. R.; Gellman, S. H. A β-peptide reverse turn that promotes hairpin formation. J. Am. Chem. Soc. 1998, 120, 10555-10556. 38.Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 1981, 34, 167-339. 39.Stanger, H. E.; Gellman, S. H. Rules for antiparallel β-sheet design: D-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation. J. Am. Chem. Soc. 1998, 120, 4236-4237. 40.Smith, C. K.; Regan, L. Guidelines for protein design: the energetics of β-sheet side chain interactions. Science 1995, 270, 980-982. 41.Blasie, C. A.; Berg, J. M. Electrostatic interactions across a β-sheet. Biochemistry 1997, 36, 6218-6222. 42.Russell, S. J.; Cochran, A. G. Designing stable β-hairpins: energetic contributions from cross-strand residues. J. Am. Chem. Soc. 2000, 122, 12600-12601. 43.Kuo, H.-T.; Liu, S.-L.; Chiu, W.-C.; Fang, C.-J.; Chang, H.-C.; Wang, W.-R.; Yang, P.-A.; Li, J.-H.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin. Amino Acids 2015, 47, 885-898. 44.Kiehna, S. E.; Waters, M. L. Sequence dependence of β-hairpin structure: comparison of a salt bridge and an aromatic interaction. Protein Sci. 2003, 12, 2657-2667. 45.Kuo, L.-H.; Li, J.-H.; Kuo, H.-T.; Hung, C.-Y.; Tsai, H.-Y.; Chiu, W.-C.; Wu, C.-H.; Wang, W.-R.; Yang, P.-A.; Yao, Y.-C.; Wong, T. W.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length at non-hydrogen bonded strand positions on β-hairpin stability. Biochemistry 2013, 52, 7785-7797. 46.Weatherford, D. W.; Salemme, F. R. Conformations of twisted parallel β-sheets and the origin of chirality in protein structures. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 19-23. 47.Fisk, J. D.; Powell, D. R.; Gellman, S. H. Control of hairpin formation via proline configuration in parallel β-sheet model systems. J. Am. Chem. Soc. 2000, 122, 5443-5447. 48.Fields, G. B.; Noble, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161-214. 49.Atherton, E.; Fox, H.; Harkiss, D.; Logan, C. J.; Sheppard, R. C.; Williams, B. J. A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. J. Chem. Soc., Chem. Commun. 1978, 537-539. 50.Volkmer-Engert, R.; Landgraf, C.; Schneider-Mergener, J. Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J. Pept. Res. 1998, 51, 365-369. 51.Russell, S. J.; Blandl, T.; Skelton, N. J.; Cochran, A. G. Stability of cyclic β-hairpins: asymmetric contributions from side chains of a hydrogen-bonded cross-strand residue pair. J. Am. Chem. Soc. 2003, 125, 388-395. 52.Aue, W. P.; Bartholdi, E.; Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 1976, 64, 2229-2246. 53.Bothnerby, A. A.; Stephens, R. L.; Lee, J. M.; Warren, C. D.; Jeanloz, R. W. Structure determination of a tetrasaccharide - transient nuclear overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984, 106, 811-813. 54.Wüthrich, K. NMR of Proteins and Nucleic Acids. John Wiley Sons: New York, 1986. 55.Yao, J.; Dyson, H. J.; Wright, P. E. Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett. 1997, 419, 285-289. 56.Dalgarno, D. C.; Levine, B. A.; Williams, R. J. P. Structural information from NMR secondary chemical-shifts of peptide α-C-H protons in proteins. Biosci. Rep. 1983, 3, 443-452. 57.Wishart, D. S.; Sykes, B. D.; Richards, F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 1991, 222, 311-333. 58.Kim, Y. M.; Prestegard, J. H. Measurement of vicinal couplings from cross peaks in COSY spectra. J. Magn. Reson. 1989, 84, 9-13. 59.Horovitz, A. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des. 1996, 1, R121-R126. 60.Smith, J. S.; Scholtz, J. M. Energetics of polar side-chain interactions in helical peptides: salt effects on ion pairs and hydrogen bonds. Biochemistry 1998, 37, 33-40. 61.Cheng, R. P.; Girinath, P.; Ahmad, R. Effect of lysine side chain length on intra-helical glutamate--lysine ion pairing interactions. Biochemistry 2007, 46, 10528-10537. 62.Volkmer-Engert, R.; Landgraf, C.; Schneider-Mergener, J. Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J. Pept. Res. 1998, 51, 365. 63.Bax, A.; Davis, D. G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 1985, 65, 355-360. 64.Piotto, M.; Saudek, V.; Sklenar, V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J. Biomol. NMR 1992, 2, 661-665. 65.Cockroft, S.; Hunter, C. Chemical double-mutant cycles: dissecting non-covalent interactions. Chem. Soc. Rev. 2007, 36, 172-188. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77039 | - |
| dc.description.abstract | β摺板是一種重要的蛋白質二級結構。β摺板中相鄰兩股對面位置上常有異性電荷胺基酸存在,顯示了異性電荷胺基酸殘基間的作用力應是非常重要的。自然界中的帶電荷胺基酸如天冬胺酸、穀胺酸、賴胺酸、精胺酸有不同數目的疏水性亞甲基連接在主鏈上。因此,為什麼自然選擇了特定的側鏈長度,帶電荷胺基酸的側鏈長短又是否會影響相鄰兩股間的離子對作用力都是有趣的問題。研究表明相鄰兩股間對面位置的離子對的胺基酸殘基互換會影響β-hairpin的穩定度。之前的研究中探討過β-hairpin中靠近N端的帶負電荷的胺基酸殘基與對面位置上靠近C端的帶正電荷的胺基酸殘基間的作用力。在這裡,我們探討了相鄰兩股間對面位置的離子對的胺基酸殘基互換的影響,即靠近C端的帶正電荷的胺基酸殘基與對面位置上靠近N端的帶負電荷的胺基酸殘基間的作用力。 實驗中的胜肽是由固相胜肽合成法合成,並由高效液相層析儀純化至純度高於95%,由MALDI-TOF確認胜肽的分子量。完成純化後,我們藉由2D-NMR的技術來鑑定胜肽的結構,包含TOCSY、DQF-COSY以及ROESY。由α質子的化學位移可判定β-hairpin的折疊程度以及折疊的自由能變化。實驗結果顯示出摺疊程度從低到高依序為:HPTDapAad < HPTDabAad ~ HPTLysAad < HPTOrnAad。這個趨勢是胺基酸本身形成β摺板的傾向與離子對間的作用力共同造成的結果。相較於我們之前的研究,實驗結果表明離子對在穩定β摺板上是有位相的偏好的。 | zh_TW |
| dc.description.abstract | β-Sheets are one of the important secondary structures in proteins. Oppositely charged residue pairs are frequently found at lateral positions of an antiparallel β-sheet, which suggests that interactions between such residues may be important for the stability of antiparallel β-sheets. The naturally existing charged amino acid residues Asp, Glu, Lys and Arg have different numbers of hydrophobic methylenes linking to the backbone. Why did nature choose these specific side chain lengths and whether the charged amino acids side chain length have an effect on cross strand ion pairing interactions are therefore interesting questions. Studies have shown that swapping the residues in a lateral ion pair changed the stability of proteins. Negatively charged residues incorporated closer to the N-terminus with lateral interactions with positively charged residues incorporated closer to the C-terminus have been previously studied in a β-hairpin by the Cheng group. Herein, we specifically studied the effect of swapping the position of cross strand lateral ion pairing residues, with the positively charged Lys analogs closer to the N-terminus with lateral interactions with the negatively charged residue (S)-3-aminoadipic acid (Aad) closer to the C-terminus. The peptides were synthesized by solid phase peptide synthesis using Fmoc-based chemistry and were purified by HPLC to higher than 95% purity. The identity of the peptides were confirmed by MALDI-TOF. The peptides were analyzed by 2D-NMR spectroscopy, including TOCSY, DQF-COSY, and ROESY spectra. The β-hairpin structure of the peptide was confirmed by chemical shift deviation, 3JHNα, and characteristics NOE connectivities. The β-hairpin population and folding free energy were determined from the chemical shift deviations of the α-protons. The fraction folded population follow the trend HPTDapAad < HPTDabAad ~ HPTLysAad < HPTOrnAad. The trend was the result of the β-sheet propensity of the constituting residues and the ion pairing interaction energy. Compared to our previous study, the results showed that ion pairs have an orientation preference for stabilizing an antiparallel β-sheet. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:44:15Z (GMT). No. of bitstreams: 1 U0001-2007202011202900.pdf: 3540892 bytes, checksum: 989f2ddedf7d51de39201ed73a2ca50f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 i 中文摘要 iii Abstract v Table of Contents ix List of Figures xiv List of Tables xix List of Schemes xxi Abbreviations xxii Chapter1. Introduction 1-1. Proteins and Amino Acids 2 1-2. The Hierarchy of Protein Structure 3 Primary Structure 3 Secondary Structure 4 Tertiary Structure 6 Quaternary Structure 6 1-3. Protein Folding 7 Hydrophobic Effect 7 Van der Waals Interaction 8 Hydrogen Bond 8 Electrostatic Interactions 9 1-4. Charged Amino Acid Side Chain Length 9 1-5. Thesis Overview 10 1-6. References 12 Chapter 2. Effect of Lys Side Chain Length on Lateral Ion Pairing Interaction with Aad in a β-Hairpin 2-1. Introduction 18 β-Sheets and β-Hairpins 18 β-Sheet Stability 18 Energetics of Cross Strand Ion Pairs 20 Ion Pair Orientation 21 2-2. Results 22 Peptide Design 22 Peptide Synthesis and Purification 25 β-Hairpin Structure Characterization by NMR 26 2-3. Discussion 46 2-4. Conclusion 53 2-5. Future Aspects 54 2-6. Acknowledgements 54 2-7. Experimental section 55 General Material and Methods 55 Peptide Synthesis 56 Nuclear Magnetic Resonance Spectroscopy 65 Chemical Shift Deviation 75 3JNHα Spin-Spin Coupling 75 Distance Determination by NOE Integrations 76 Fraction Folded Population and Folding Free Energy(ΔGfold) 76 Double Mutant Cycle Analysis 77 2-8. References 78 | |
| dc.language.iso | en | |
| dc.subject | 非自然界胺基酸 | zh_TW |
| dc.subject | β摺板 | zh_TW |
| dc.subject | 反向平行β-hairpin | zh_TW |
| dc.subject | 離子對作用力 | zh_TW |
| dc.subject | antiparallel β-hairpin | en |
| dc.subject | non-natural amino acids | en |
| dc.subject | ion pairing interaction | en |
| dc.subject | β-sheet | en |
| dc.title | 離胺酸側鏈長度對在β-hairpin中與對面的α-氨基己二酸的離子對作用力的影響 | zh_TW |
| dc.title | Effect of Lys Side Chain Length on Lateral Ion-pairing Interaction with Aad in a β-Hairpin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳佩燁(Rita P.-Y. Chen),黃人則(Joseph Jen-Tse Huang) | |
| dc.subject.keyword | β摺板,反向平行β-hairpin,離子對作用力,非自然界胺基酸, | zh_TW |
| dc.subject.keyword | β-sheet,antiparallel β-hairpin,ion pairing interaction,non-natural amino acids, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202001637 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202011202900.pdf 未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
