請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡皇龍(Huang-Lung Tsai) | |
| dc.contributor.author | Juo-Nang Liao | en |
| dc.contributor.author | 廖若男 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:44:13Z | - |
| dc.date.available | 2021-07-10T21:44:13Z | - |
| dc.date.copyright | 2020-07-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-21 | |
| dc.identifier.citation | Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Bhardwaj, V., Meier, S., Petersen, L.N., Ingle, R.A., and Roden, L.C. (2011). Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS One 6, e26968. Bhuyan, A.K. (2010). On the mechanism of SDS‐induced protein denaturation. Biopolymers: Original Research on Biomolecules 93, 186-199. Chen, X. (2010). Small RNAs–secrets and surprises of the genome. The Plant Journal 61, 941-958. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743. Devlin, P.F. (2002). Signs of the time: environmental input to the circadian clock. Journal of Experimental Botany 53, 1535-1550. Dodd, A.N., Salathia, N., Hall, A., Kévei, E., Tóth, R., Nagy, F., Hibberd, J.M., Millar, A.J., and Webb, A.A. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630-633. Dowson‐Day, M.J., and Millar, A.J. (1999). Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. The Plant Journal 17, 63-71. Fujiwara, S., Oda, A., Yoshida, R., Niinuma, K., Miyata, K., Tomozoe, Y., Tajima, T., Nakagawa, M., Hayashi, K., and Coupland, G. (2008). Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. The Plant Cell 20, 2960-2971. Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., and Kay, S.A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences 109, 3167-3172. Goodspeed, D., Chehab, E.W., Min-Venditti, A., Braam, J., and Covington, M.F. (2012). Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences 109, 4674-4677. Gould, P.D., Locke, J.C., Larue, C., Southern, M.M., Davis, S.J., Hanano, S., Moyle, R., Milich, R., Putterill, J., and Millar, A.J. (2006). The molecular basis of temperature compensation in the Arabidopsis circadian clock. The Plant Cell 18, 1177-1187. Harris, R.S., Petersen-Mahrt, S.K., and Neuberger, M.S. (2002). RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Molecular Cell 10, 1247-1253. Huang, W.Y., Wu, Y.C., Pu, H.Y., Wang, Y., Jang, G.J., and Wu, S.H. (2017). Plant dual‐specificity tyrosine phosphorylation‐regulated kinase optimizes light‐regulated growth and development in Arabidopsis. Plant, Cell and Environment 40, 1735-1747. Inoue, K., Araki, T., and Endo, M. (2018). Circadian clock during plant development. Journal of Plant Research 131, 59-66. Krüger, J., and Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research 34, W451-W454. Mas, P. (2005). Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. International Journal of Developmental Biology 49, 491-500. Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. The Plant Journal 37, 426-438. Michael, T.P., Salome, P.A., Hannah, J.Y., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R., and McClung, C.R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049-1053. Millar, A.J. (2004). Input signals to the plant circadian clock. Journal of Experimental Botany 55, 277-283. Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., Fowler, S., Kamada, H., and Putterill, J. (2005). Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell 17, 2255-2270. Monfared, M.M., Simon, M.K., Meister, R.J., Roig‐Villanova, I., Kooiker, M., Colombo, L., Fletcher, J.C., and Gasser, C.S. (2011). Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. The Plant Journal 66, 1020-1031. Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.-H., and Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. The Plant Cell 22, 594-605. Niwa, Y., Yamashino, T., and Mizuno, T. (2009). The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant and Cell Physiology 50, 838-854. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582. Petrella, R., Caselli, F., Roig-Villanova, I., Vignati, V., Chiara, M., Ezquer, I., Tadini, L., Kater, M.M., and Gregis, V. (2020). BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. The Plant Journal 102, 582-599. Rehmsmeier, M., Steffen, P., Höchsmann, M., and Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507-1517. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell 18, 1121-1133. Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences 24, 181-185. Srivastava, D., Shamim, M., Kumar, M., Mishra, A., Maurya, R., Sharma, D., Pandey, P., and Singh, K. (2019). Role of circadian rhythm in plant system: An update from development to stress response. Environmental and Experimental Botany. Wang, Y., Wu, J.-F., Nakamichi, N., Sakakibara, H., Nam, H.-G., and Wu, S.-H. (2011). LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. The Plant Cell 23, 486-498. Wang, Z.-Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217. Wu, H.-Y., Liu, K.-H., Wang, Y.-C., Wu, J.-F., Chiu, W.-L., Chen, C.-Y., Wu, S.-H., Sheen, J., and Lai, E.-M. (2014). AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10, 19. Wu, J., Mohamed, D., Dowhanik, S., Petrella, R., Gregis, V., Li, J., Wu, L., and Gazzarrini, S. (2020). Spatiotemporal Restriction of FUSCA3 Expression by Class I BPCs Promotes Ovule Development and Coordinates Embryo and Endosperm Growth. The Plant Cell 32, 1886-1904. Wu, J.-F., Wang, Y., and Wu, S.-H. (2008). Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiology 148, 948-959. Wu, J.-F., Tsai, H.-L., Joanito, I., Wu, Y.-C., Chang, C.-W., Li, Y.-H., Wang, Y., Hong, J.C., Chu, J.-W., and Hsu, C.-P. (2016). LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nature Communications 7, 1-10. Xie, Q., Wang, P., Liu, X., Yuan, L., Wang, L., Zhang, C., Li, Y., Xing, H., Zhi, L., and Yue, Z. (2014). LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. The Plant Cell 26, 2843-2857. Yazdanbakhsh, N., Sulpice, R., Graf, A., Stitt, M., and Fisahn, J. (2011). Circadian control of root elongation and C partitioning in Arabidopsis thaliana. Plant, Cell and Environment 34, 877-894. Zhao, X., Li, G., and Liang, S. (2013). Several affinity tags commonly used in chromatographic purification. J Anal Methods Chem 2013, 581093. Zhou, M., Wang, W., Karapetyan, S., Mwimba, M., Marqués, J., Buchler, N.E., and Dong, X. (2015). Redox rhythm reinforces the circadian clock to gate immune response. Nature 523, 472-476. Zuo, J., Niu, Q.W., and Chua, N.H. (2000). An estrogen receptor‐based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24, 265-273. Zuo, J., Hare, P.D., and Chua, N.H. (2006). Applications of chemical-inducible expression systems in functional genomics and biotechnology. Methods in Molecular Biology 323, 329-342. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77038 | - |
| dc.description.abstract | 爲因應地球自轉產生的晝夜輪替,生物體內的生理時鐘(circadian clock)能整合外在週期性的環境變化與內在基因調控,進而調節各種生理途徑成規律的變化。目前已知阿拉伯芥(Arabidopsis thaliana)的生理時鐘是由許多基因調控迴圈組成的基因網絡。先前研究指出LIGHT-REGULATED WD1 (LWD1) 能正向調控阿拉伯芥生理時鐘,此外也發現植物特有的轉錄因子BASIC PENTACYSTEINE (BPC)家族與LWD1晝夜節律的表現模式類似,且BPC突變株具有多重生理時鐘調控的外顯缺陷,因此本研究進一步探討BPC家族於阿拉伯芥生理時鐘的調節所扮演的角色,本論文進行三種不同遺傳性分析策略來測定BPC家族對於阿拉伯芥生理時鐘的調控:(一) 建立可抑制BPC基因表現的artificial mircoRNA-BPCs(amiR-BPCs)誘導構築,並檢測抑制BPC表現時植物生理時鐘基因表現是否被影響; (二) 利用小鼠的Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (mAPOBEC1) 去胺基酶融合於BPC3/4蛋白,檢測BPC3/4 可能結合的時鐘基因啟動子; (三) 利用雙分子螢光互補作用(bimolecular fluorescence complementation, BiFC) 檢測LWD1及BPC3/4蛋白質之間的交互作用。本研究於帶有時鐘基因報導子之阿拉伯芥中分別轉殖amiR-BPC1/2以及BPC3/4-mAPOBEC1構築。目前測試轉植株分別在amiR-BPC1/2誘導前後對於pCCA1及pGI報導子皆無明顯改變,但仍須進一步檢測amiRNA是否能有效抑制BPC表現。測試mAPOBEC1與BPC3/4融合蛋白之轉殖株時發現mAPOBEC1融合可能使BPC3/4失去原先的功能,並不適用作為研究BPC功能之工具。在LWD1與BPC3/4 BiFC交互作用測試中,我已成功偵測到 LWD1與BPC3和BPC4在細胞中的交互作用,顯示LWD1可與BPC3或BPC4在細胞中確實可形成蛋白質複合體。 | zh_TW |
| dc.description.abstract | To fit external changes upon the day-night cycle, the internal circadian clock of organism adjusts various physiological pathways according to the external rhythmic stimuli. The circadian clock of Arabidopsis thaliana is a complex network composing of feedback regulatory gene loops. Previous studies have shown that LIGHT-REGULATED WD1 (LWD1), one of clock components, positively regulates the promoters of clock genes without a putative DNA-binding domain. In a LWD1 coexpression assay, the transcriptional profiles of BASIC PENTACYSTEINE (BPC) members were coexpressed with that of the LWD1 under the day-night cycle. It has been reported that the high order mutant of BPCs shows multiple defects in clock-regulated phenotypes. We therefore investigated the role of BPC family in the regulation of the circadian clock. We construct an inducible amiRNA targeting the BPC members to examine whether the clock behavior would be affected while the repression of BPCs was induced. Furthermore, we fused BPC3 and BPC4 respectively with the mouse apolipoprotein B mRNA editing enzyme catalytic polypeptide 1 (mAPOBEC1), a deaminase, for examining BPC3/4 in vivo targeting sites of promoters of clock genes. We also tested the interaction between LWD1 and BPC3/4 by conducting bimolecular fluorescence complementation (BiFC) in Arabidopsis seedlings. We are currently testing the functions of amiRNA and BPC3/4-mAPOBEC1 constructs in the transgenic lines carrying the clock reporter. In the preliminary data, neither the profile of pCCA1 nor that of pGI reporter was changed under the induction of amiR-BPC1/2. We would further examine if BPC expressions were inhibited by the amiR-BPC1/2. By analyzing transgenic plants carrying mAPOBEC1 fused BPC3/4 proteins, we found that mAPOBEC1 fusion may have impeded the function of BPC3/4 protein and not suitable for the study. BiFC signals were successfully detected by coexpressing LWD1 with BPC3 or BPC4 in Arabidopsis seedlings, indicating that LWD1 would form with BPC3 or BPC4 a protein complex in cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:44:13Z (GMT). No. of bitstreams: 1 U0001-2007202011391500.pdf: 3608559 bytes, checksum: 3ab0ee1a2e9084fe3be49a30325436b6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 誌謝 II 摘要 III ABSTRACT IV CONTENTS VI LIST OF TABLES AND FIGURES VIII LIST OF SUPPLEMENTAL TABLES AND FIGURES IX CHAPTER 1. INTRODUCTION 1 1.1 The role of circadian clock in plant viability 1 1.2 The regulatory gene feedback loops in Arabidopsis circadian clock 2 1.3 LWD1-coexpressed transcription factor BPCs function in physiological processes 3 1.4 Strategies to examine BPC functions 4 CHAPTER 2. MATERIALS AND METHODS 6 2.1 Cloning of the constructs 6 2.2 Plant materials and growth conditions 7 2.3 Polymerase Chain Reaction (PCR) 8 2.4 Gibson Assembly 9 2.5 Transformation 10 2.6 Agrobacterium-mediated enhanced seedling transformation (AGROBEST) 11 2.7 Western blotting assay 14 2.8 Floral dipping assay (Agrobacterium-mediated transformation of Arabidopsis) 19 2.9 RNA preparation and quantitative reverse transcription PCR (RT-qPCR) 20 2.10 Genomic DNA extraction 24 2.11 Bioluminescence measurement and data analyses 26 2.12 Bimolecular fluorescence complementation (BiFC) assay 26 CHAPTER 3. RESULTS 28 3.1 The designation of artificial microRNAs against transcripts of BPCs 28 3.2 The chemical-inducible system in Arabidopsis 28 3.3 Functional test in protein level of artificial microRNA by AGROBEST 30 3.4 Construction progress of stable transgenic lines for amiR-BPCs induction 31 3.5 In vivo binding test with APOBEC1-fused BPC3/4 32 3.6 Testing BPC3/4 C-terminal fused mAPOBEC1 in reporter line 33 3.7 The in vivo interaction between LWD1 and BPC3 or BPC4 34 CHAPTER 4. DISCUSSION 36 REFERENCES 39 TABLES 43 FIGURES 45 SUPPLEMENTS 63 | |
| dc.language.iso | en | |
| dc.subject | 雙分子螢光互補作用 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | 晝夜節律 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | circadian rhythm | en |
| dc.subject | bimolecular fluorescence complementation (BiFC) | en |
| dc.subject | apolipoprotein B mRNA editing enzyme catalytic polypeptide 1 (APOBEC1) | en |
| dc.subject | BASIC PENTACYSTEINE (BPC) | en |
| dc.subject | LIGHT-REGULATED WD1 (LWD1) | en |
| dc.subject | artificial mircoRNA | en |
| dc.subject | Arabidopsis | en |
| dc.subject | Circadian clock | en |
| dc.title | BPC家族於阿拉伯芥生理時鐘調節之遺傳分析 | zh_TW |
| dc.title | Genetic assays on the regulatory role of BPC family for the circadian clock in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林盈仲(Ying-Chung Lin),林信宏(Hsin-Hung Lin) | |
| dc.subject.keyword | 生理時鐘,晝夜節律,阿拉伯芥,雙分子螢光互補作用, | zh_TW |
| dc.subject.keyword | Circadian clock,circadian rhythm,Arabidopsis,artificial mircoRNA,LIGHT-REGULATED WD1 (LWD1),BASIC PENTACYSTEINE (BPC),apolipoprotein B mRNA editing enzyme catalytic polypeptide 1 (APOBEC1),bimolecular fluorescence complementation (BiFC), | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202001639 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202011391500.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
