Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(Chee Wee Liu)
dc.contributor.authorYu-Shiang Huangen
dc.contributor.author黃郁翔zh_TW
dc.date.accessioned2021-07-10T21:43:29Z-
dc.date.available2021-07-10T21:43:29Z-
dc.date.copyright2020-08-03
dc.date.issued2020
dc.date.submitted2020-07-26
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77017-
dc.description.abstract在本篇論文中著重於化學氣相沉積成長之鍺錫量子井p型金氧半場效電晶體與垂直堆疊鍺錫p型/鍺矽n型閘極環繞式電晶體之製備與特性分析,分別探討磊晶層結構設計、材料分析、電子束曝光、非等相性蝕刻、通道生成、閘極堆疊、源汲極接觸、電流-電壓/電容-電壓特性分析、變溫量測、介面缺陷密度萃取、外部應力響應、低頻雜訊與穿透式電子顯微鏡分析之相關模組技術與製程整合。
閘極環繞式結構有著最佳之閘極控制能力。垂直堆疊通道可於一給定面積之下增加等效通道寬度進而增進電流。垂直堆疊奈米片於一給定面積下有相較垂直堆疊奈米線與鰭式電晶體著更大之導通電流與更小之寄生電容。此外垂直堆疊奈米片相較於鰭式電晶體在先進製程能力上有著許多優勢。首先,良好控制之磊晶、選擇性等相性蝕刻與原子層沉積造成高一致性的奈米片厚度的並具有小的表面粗糙度與較鰭式電晶體小的通道間隔。此外,於奈米片下方之應力釋放層可以提供強大之應力來源。再者,可依照設計需求與極紫外光技術調整垂直堆疊奈米片之等效通道寬度而增加設計靈活性與佈局效率。另一方面,鍺矽、鍺與鍺錫之鍺基通道可利用化學氣相沉積磊晶成長於矽基板上並有較矽而言更大之載子遷移率,故成為有機會取代矽之候選材料。
本論文之第一部分將探討最佳化鍺覆蓋層厚度於鍺錫量子井p型金氧半場效電晶體中。鍺覆蓋層於鍺錫通道上可以降低介面缺陷密度並且將載子遠離氧化層/鍺之介面進而降低雜質散射與表面粗糙度散射以增進載子遷移率。然而,若鍺覆蓋層厚度太厚,則會有許多載子位於鍺覆蓋層中,而導致載子遷移率下降。1奈米鍺覆蓋層於鍺錫通道上可達成化學氣象沉積成長之鍺錫p型電晶體之世界紀錄電洞遷移率509 cm2/V·s。
本論文之第二部分探討利用最佳化雙氧水濕式蝕刻之通道生成條件、低熱預算閘極、源汲極鉑鍺錫接觸於硼內摻雜鍺錫上,進而製備出世界第一顆垂直堆疊鍺錫通道p型閘極環繞式電晶體;此外利用不同方向之蝕刻速率差異性製備出具有{111}面之垂直堆疊三角形鍺0.91錫0.09通道可增進鍺錫通道p型閘極環繞式電晶體之效能;再者利用鍺0.95錫0.05覆蓋層於垂直堆疊鍺0.88錫0.12通道上、通道長度縮小至40奈米、壓縮應力增至3.3%、低通道摻雜、高源汲極摻雜與400oC之熱穩定性更進一步提升垂直堆疊鍺錫通道p型閘極環繞式電晶體之效能。此垂直堆疊鍺0.88錫0.12奈米片具有所有鍺錫P型電晶體中世界紀錄之58A每通道堆疊導通電流 (2724 μA/μm 每單位通道水平寬度導通電流或376 μA/μm 每單位通道周長導通電流)於VOV=VDS= -0.5V,與世界紀錄之172S每通道堆疊最大跨導 (8037 μS/μm 每單位通道水平寬度最大跨導或1110 μS/μm 每單位通道周長最大跨導)於VDS= -0.5V;此外,利用自由基蝕刻為基礎之高度選擇性等向性乾式蝕刻首次製備出4層堆疊12奈米厚之鍺0.915錫0.085通道p型閘極環繞式電晶體並具有大於50奈米之奈米片寬度、高源汲極摻雜與未摻雜通道。此乾蝕刻之蝕刻選擇比與均勻度相較於雙氧水濕蝕刻有非常顯著之提升。
本論文之最後部分將探討利用蝕刻最佳化去除寄生通道並製備具有0.27%拉伸應力之垂直堆疊鍺0.98矽0.02 n型閘極環繞式電晶體。為了要選擇性蝕刻去除寄生矽通道、鍺緩衝層、鍺犧牲層並保留鍺矽通道,鍺矽通道有著2%之矽。而因為只有2%,此鍺矽通道之導帶中L谷能量還是所有谷中最小的,且合金散射非常小,故可以有著較大之載子遷移率,達成14.9A每通道堆疊導通電流 (1250 μA/μm 每單位通道水平寬度導通電流或211 μA/μm 每單位通道周長導通電流)於VOV=VDS= -0.5V,與39.4μS每通道堆疊最大跨導(3280 μS/μm 每單位通道水平寬度最大跨導或559μS/μm每單位通道周長最大跨導)於VDS= -0.5V並具備次臨界擺幅=73mV/dec。
zh_TW
dc.description.abstractIn this dissertation, the fabrication and characterization of chemical vapor deposition (CVD)-grown GeSn quantum well (QW) pMOSFETs and vertically stacked GeSn p-type Gate-All-Around (GAA) FETs/GeSi nGAAFETs are investigated in terms of epi structure design, material analysis, e-beam lithography, anisotropic etching, channel release, gate stack, SD contact, IV/CV characteristics, temperature dependent measurement, interface trap density (Dit) extraction, external strain response, low frequency noise, and TEM analysis.
GAA structure has the ultimate gate controllability. Stacked channel structure enlarges effective channel width (channel perimeter, Weff) in a given footprint to improve ION. Stacked nanosheets has larger ION and smaller parasitic capacitance than stacked nanowires and FinFETs in a certain footprint. There are many benefits for stacked nanosheets as compared to FinFETs in points of advanced process capability. First of all, the well-controlled epitaxy, selective isotropic etching, and atomic layer deposition (ALD) process result in uniform nanosheet thickness with small surface roughness and small inter-channel spacing. In addition, the strained relaxed buffer (SRB) under the nanosheets can be a strong stressor. Moreover, continuous Weff tuning of stacked nanosheets and EUV technology add design flexibility and improve layout efficiency. On the other hand, the Ge-based channel materials, such as GeSi, Ge, and GeSn, can be epitaxially grown on Si wafer by CVD with higher mobility than Si, becoming promising candidates to replace Si.
In the first part of this dissertation, GeSn QW p-MOSFETs are demonstrated with optimized Ge cap thickness. The Ge cap on the GeSn channel can reduce the interface trap density (Dit) and also separate the carriers from the oxide/Ge interface to reduce the impurity scattering and surface roughness scattering for high mobility. However, the mobility also degrades with thick Ge cap due to the large hole population in the Ge cap. The GeSn with 1nm Ge cap achieve the record high peak mobility of 509 cm2/V·s among all CVD-grown GeSn pFETs.
In the second part of this dissertation, the first stacked GeSn pGAAFETs are demonstrated by optimized channel release process of H2O2 wet etching, low thermal budget gate stack, and S/D PtGeSn contact on in-situ B doped GeSn. In addition, the performance enhancement for GeSn pGAAFETs are demonstrated by the stacked triangular Ge0.91Sn0.09 Channels with {111} facets formed by orientation dependent etching. Moreover, the performance of stacked GeSn pGAAFETs are further boosted by stacked Ge0.88Sn0.12 channels with Ge0.95Sn0.05 cap, scaled gate length (Lg)=40nm, enlarged compressive strain of 3.3%, low channel doping, and high S/D doping with thermal stability up to 400oC. The stacked 3 Ge0.88Sn0.12 nanosheets achieve record ION of 58μA per stack (2724μA/μm per channel footprint (WCH or 376μA/μm per Weff) at VOV=VDS= -0.5V and record Gm,max of 172μS (8037μA/μS per WCH or 1110 μA/μS per Weff) at VDS= -0.5V among all GeSn pFETs. Furthermore, the first 4-stacked, 12nm-thick Ge0.915Sn0.085 with the width larger than 50nm, high S/D doping and undoped channels are realized by a radical-based highly selective isotropic dry etching (HiSIDE). The etching selectivity and the channel uniformity are highly improved by the dry etching as compared to H2O2 wet etching.
In the final part of this dissertation, the stacked 0.27% tensily strained Ge0.98Si0.02 nGAAFETs are fabricated without parasitic channels by optimized etching process. To selectively etch the parasitic Si, Ge buffer, and Ge sacrificial layers (SL) over the GeSi channels, the GeSi channels have 2% Si inside. The Ge0.98Si0.02 still has L valleys as the conduction band minima and very weak alloy scattering for high mobility. ION of 14.9μA per stack (1250μA/μm per WCH or 211μA/μm per Weff) at VOV=VDS=0.5V and Gm,max of 39.4μS per stack (3280μS/μm per WCH or 559μS/μm per Weff) at VDS =0.5V with SS=73mV/dec are achieved.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:43:29Z (GMT). No. of bitstreams: 1
U0001-2207202019173100.pdf: 13979480 bytes, checksum: 1997a355088bef9d17169ebbca8d301c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsTable of Content
誌謝 vii
Related Publication (相關論文發表) ix
摘要 xiii
Abstract xv
Table of Content xviii
List of Figures xxii
Chapter 1 Introduction 1
1.1 The Invention of Transistor and The History of More Moore Scaling 1
1.2 Gate-All-Around Architecture 5
1.3 High Mobility Ge-based Channel Materials 14
1.3.1 Ge channel 14
1.3.2 GeSn channel 15
1.4 Thesis Organization 18
Chapter 2 Ge/Strained GeSn/Ge Quantum-Well pMOSFETs on Si 24
2.1 Introduction 24
2.2 CVD Epitaxy and Material Characterization 26
2.3 Ge Cap Thin Down Process 30
2.4 MOSFETs Fabrication 33
2.5 Electrical Characterizations 35
2.5.1 Schottky S/D 35
2.5.2 Gate stack and Dit characterizations 38
2.5.3 Electrical proterties of pMOSFETs 42
2.5.4 External strain response 51
2.5.5 Low frequency noise 52
2.6 Summary 55
Chapter 3 Vertically Stacked GeSn Channel pGAAFETs 57
3.1 Introduction 57
3.2 Modules Development and Process Integration 59
3.2.1 Solution to epi: defect confinement, top SL, and strain 59
3.2.2 Solution to thermal stability: in-situ B-doped GeSn 62
3.2.3 Solution to stacked channel release: H2O2 etching with B-doped GeSn channel and undoped Ge SLs 65
3.2.4 Solution to uniformity: Top Ge SL and ultrasonic-assisted etching 68
3.2.5 Effective mass and strain after channel release 71
3.2.6 Solution to low thermal budget gate stack: TiN/ZrO2 /Al2O3 +RTO with 400oC thermal budget 73
3.2.7 Solution to S/D: in-situ doped thick GeSn S/D with PtGeSn/PtGe 76
3.2.8 Summary of the solution for stacked GeSn pGAAFETs 78
3.2.9 Summary of the fabrication process for stacked 3 Ge0.93Sn0.07 channel pGAAFETs 79
3.3 Electrical Characterizations for GeSn pGAAFETs 81
3.3.1 Single channel GeSn pGAAFETs 81
3.3.2 Stacked 2 GeSn channel pGAAFETs 84
3.3.3 Stacked 3 GeSn channel pGAAFETs 86
3.3.4 LF noise, and temperature dependence 90
3.4 Summary 92
Chapter 4 Performance Enhancement for Stacked GeSn Channel pGAAFETs: {111} Facets and Cap 93
4.1 Introduction 93
4.2 Modules Development and Process Integration for Device with {111} Facets 96
4.2.1 Epilayer design 96
4.3 Process optimization 98
4.3.1 Summary of the process for device with {111} Facets 103
4.4 Device Performance for the stacked GeSn channels with {111} Facets 104
4.5 Modules Development and Process Integration for Device with Ge0.88Sn0.12 channels and Ge0.95Sn0.05 caps 109
4.5.1 Epilayer design 109
4.5.2 Thermal stability summary 113
4.5.3 Process optimization 114
4.5.4 Summary of the process for device with caps 120
4.6 Device Performance for the Stacked Ge0.88Sn0.12 Channels and Ge0.95Sn0.05 cap 121
4.7 Summary 128
Chapter 5 4-Stacked GeSn Wide Nanosheets by Dry Etching 130
5.1 Introduction 130
5.2 Modules Development and Process Integration 134
5.2.1 Epilayer design 134
5.2.2 Process optimization 137
5.2.3 Summary of the process for device with stacked undoped GeSn nanosheets 142
5.3 Electrical Properties and TEM Analysis 143
5.4 Summary 152
Chapter 6 Vertically Stacked Tensily Strained GeSi Channel nGAAFETs without Parasitic Channels 153
6.1 Introduction 153
6.2 Modules Development and Process Integration 155
6.2.1 Epilayer design 155
6.2.2 Process optimization 157
6.3 Device Performance 161
6.4 Summary 165
Chapter 7 Summary and Future Work 166
7.1 Summary 166
7.2 Future Work 168
Reference 174
dc.language.isoen
dc.subject閘極環繞式電晶體zh_TW
dc.subject鍺矽zh_TW
dc.subject鍺錫zh_TW
dc.subject垂直堆疊通道zh_TW
dc.subject奈米片zh_TW
dc.subject磊晶結構設計zh_TW
dc.subject低頻雜訊zh_TW
dc.subject通道生成zh_TW
dc.subject源汲極接觸zh_TW
dc.subject應力響應zh_TW
dc.subjectGeSnen
dc.subjectlow frequency noiseen
dc.subjectstrain responseen
dc.subjectSD contacten
dc.subjectchannel releaseen
dc.subjectepi structure designen
dc.subjectnanosheeten
dc.subjectstacked channelsen
dc.subjectGAAFETsen
dc.subjectGeSien
dc.title化學氣相沉積成長之垂直堆疊鍺錫/鍺矽通道閘極環繞式電晶體之製備與特性分析
zh_TW
dc.titleFabrication and Characterization of CVD-Grown Vertically Stacked GeSn/GeSi Channel GAAFETsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-5593-1193
dc.contributor.oralexamcommittee李敏鴻(Min-Hung Lee),陳敏璋(Miin-Jang Chen),張廖貴術(KS Chang-Liao),張書通(Shu-Tong Chang),林楚軒(Chu-Hsuan Lin)
dc.subject.keyword鍺錫,鍺矽,閘極環繞式電晶體,垂直堆疊通道,奈米片,磊晶結構設計,通道生成,源汲極接觸,應力響應,低頻雜訊,zh_TW
dc.subject.keywordGeSn,GeSi,GAAFETs,stacked channels,nanosheet,epi structure design,channel release,SD contact,strain response,low frequency noise,en
dc.relation.page194
dc.identifier.doi10.6342/NTU202001752
dc.rights.note未授權
dc.date.accepted2020-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2207202019173100.pdf
  未授權公開取用
13.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved