Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorTing-Yu Tsaien
dc.contributor.author蔡婷伃zh_TW
dc.date.accessioned2021-07-10T21:43:13Z-
dc.date.available2021-07-10T21:43:13Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-28
dc.identifier.citation1. Jaklitsch, M.T., et al., The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. The Journal of thoracic and cardiovascular surgery, 2012. 144(1): p. 33-38.
2. Haemers, S., G.J. Koper, and G. Frens, Effect of oxidation rate on cross-linking of mussel adhesive proteins. Biomacromolecules, 2003. 4(3): p. 632-640.
3. Suzuki, K., et al., Video-assisted thoracoscopic surgery for small indeterminate pulmonary nodules: indications for preoperative marking. Chest, 1999. 115(2): p. 563-568.
4. Chen, Y.-R., et al., CT-guided hook wire localization of subpleural lung lesions for video-assisted thoracoscopic surgery (VATS). Journal of the Formosan Medical Association, 2007. 106(11): p. 911-918.
5. Park, J.B., et al., Computed tomography-guided percutaneous hook wire localization of pulmonary nodular lesions before video-assisted thoracoscopic surgery: Highlighting technical aspects. Annals of thoracic medicine, 2019. 14(3): p. 205.
6. Lin, M.-W., et al., Computed tomography-guided patent blue vital dye localization of pulmonary nodules in uniportal thoracoscopy. The Journal of thoracic and cardiovascular surgery, 2016. 152(2): p. 535-544. e2.
7. Kleedehn, M., et al., Preoperative pulmonary nodule localization: a comparison of methylene blue and hookwire techniques. American Journal of Roentgenology, 2016. 207(6): p. 1334-1339.
8. Kuo, S.-W., et al., Electromagnetic navigation bronchoscopy localization versus percutaneous CT-guided localization for lung resection via video-assisted thoracoscopic surgery: a propensity-matched study. Journal of clinical medicine, 2019. 8(3): p. 379.
9. Despars, J.A., C.S. Sassoon, and R.W. Light, Significance of iatrogenic pneumothoraces. Chest, 1994. 105(4): p. 1147-1150.
10. Waite, J.H., Mussel adhesion–essential footwork. Journal of Experimental Biology, 2017. 220(4): p. 517-530.
11. Kord Forooshani, P. and B.P. Lee, Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55(1): p. 9-33.
12. Kim, B.J., et al., Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules, 2014. 15(5): p. 1579-1585.
13. Scognamiglio, F., et al., Enhanced bioadhesivity of dopamine-functionalized polysaccharidic membranes for general surgery applications. Acta Biomaterialia, 2016. 44: p. 232-242.
14. Hou, J., et al., Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polymer Chemistry, 2015. 6(12): p. 2204-2213.
15. Bilic, G., et al., Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. American journal of obstetrics and gynecology, 2010. 202(1): p. 85. e1-85. e9.
16. Zhang, H., et al., Mussel-inspired hyperbranched poly (amino ester) polymer as strong wet tissue adhesive. Biomaterials, 2014. 35(2): p. 711-719.
17. Lee, B.P., J.L. Dalsin, and P.B. Messersmith, Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules, 2002. 3(5): p. 1038-1047.
18. Wang, R., et al., A biomimetic mussel‐inspired ε‐poly‐l‐lysine hydrogel with robust tissue‐anchor and anti‐infection capacity. Advanced Functional Materials, 2017. 27(8): p. 1604894.
19. Lee, F., K.H. Bae, and M. Kurisawa, Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomedical Materials, 2015. 11(1): p. 014101.
20. Yang, J., M.A.C. Stuart, and M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews, 2014. 43(24): p. 8271-8298.
21. Fan, C., et al., A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use. Acta biomaterialia, 2016. 33: p. 51-63.
22. Mehdizadeh, M., et al., Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials, 2012. 33(32): p. 7972-7983.
23. Bohari, S.P., D.W. Hukins, and L.M. Grover, Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts. Bio-medical materials and engineering, 2011. 21(3): p. 159-170.
24. Barbetta, A., et al., Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams. Soft Matter, 2010. 6(20): p. 5213-5224.
25. Fenn, S.L., P.N. Charron, and R.A. Oldinski, Anticancer therapeutic alginate-based tissue sealants for lung repair. ACS applied materials interfaces, 2017. 9(28): p. 23409-23419.
26. Kastrup, C.J., et al., Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proceedings of the National Academy of Sciences, 2012. 109(52): p. 21444-21449.
27. Zhang, S., et al., Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Materials Science and Engineering: C, 2016. 69: p. 496-504.
28. Cholewinski, A., F.K. Yang, and B. Zhao, Underwater Contact Behavior of Alginate and Catechol-Conjugated Alginate Hydrogel Beads. Langmuir, 2017. 33(34): p. 8353-8361.
29. Yan, S., et al., Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. Journal of Materials Chemistry B, 2018. 6(40): p. 6377-6390.
30. Lee, C., et al., Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules, 2013. 14(6): p. 2004-2013.
31. Ryu, J.H., et al., Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011. 12(7): p. 2653-2659.
32. Ghosh, K., et al., Rheological characterization of in situ cross-linkable hyaluronan hydrogels. Biomacromolecules, 2005. 6(5): p. 2857-2865.
33. Meng, H., et al., Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety. Acta biomaterialia, 2015. 17: p. 160-169.
34. Forooshani, P.K., H. Meng, and B.P. Lee, Catechol redox reaction: reactive oxygen species generation, regulation, and biomedical applications, in Advances in Bioinspired and Biomedical Materials Volume 1. 2017, ACS Publications. p. 179-196.
35. Yu, M., J. Hwang, and T.J. Deming, Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins. Journal of the American Chemical Society, 1999. 121(24): p. 5825-5826.
36. Forsyth, W., V. Quesnel, and J. Roberts, Diphenylenedioxide-2, 3-quinone: an intermediate in the enzymic oxidation of catechol. Biochimica et biophysica acta, 1960. 37(2): p. 322-326.
37. Harrison, C.R. and P. Hodge, Polymer-supported periodate and iodate as oxidizing agents. Journal of the Chemical Society, Perkin Transactions 1, 1982: p. 509-511.
38. Moulay, S., Dopa/catechol-tethered polymers: Bioadhesives and biomimetic adhesive materials. Polymer Reviews, 2014. 54(3): p. 436-513.
39. Feng, J., et al., Mechanically reinforced catechol-containing hydrogels with improved tissue gluing performance. Biomimetics, 2017. 2(4): p. 23.
40. Clement, M.V., et al., The cytotoxicity of dopamine may be an artefact of cell culture. Journal of neurochemistry, 2002. 81(3): p. 414-421.
41. Pereira, M.R.G., et al., Cytotoxicity of catechol towards human glioblastoma cells via superoxide and reactive quinones generation. Jornal Brasileiro de Patologia e Medicina Laboratorial, 2004. 40(4): p. 280-285.
42. Lennicke, C., et al., Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 2015. 13(1): p. 1-19.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77009-
dc.description.abstract肺癌是世界上最常見且死亡率高的癌症之一,為降低肺癌死亡率,早期診斷非常重要。肺癌在初期階段大多呈現小型的惡性結節,可透過低劑量的CT (LDCT)來檢測出,但在開刀切除腫瘤時,因這些惡性結節體積小,難以透過肉眼或觸摸來確認位置,所以胸腔外科醫師在開刀切除前,會先請放射科醫師對病患肺部的惡性結節做定位,方法有植入帶鉤細金屬絲(hookwire),或是施打染劑(patent blue)到病灶來協助定位。然而現今的定位手術方法,除了會引起病人氣胸之外,裸露在病人胸腔外的金屬絲也會引起病患的恐懼和不便,而水溶性的染劑也會在病患呼吸或是移動時擴散,造成定位不精確或失敗。因此我們研發出一種帶有黏性和顏色的水膠,注射進病患肺部後,能夠緊緊的黏在病灶處不擴散,並且堵住定位手術時因針頭插入肺所造成的破洞,降低氣胸發生的機率,用以取代染劑和帶鉤金屬絲作為新型腫瘤定位材料。
近年研究發現,貽貝類的觸手在含水的環境下,依然能黏附在各種材料表面上,其因源自於牠的觸手能夠分泌出含大量鄰苯二酚(catechol)的黏液,鄰苯二酚的結構能與無機、有機物表面形成共價鍵和非共價鍵,進而產生黏性。因此,我們將同樣擁有此官能基的多巴胺(Dopamine)透過EDC/NHS反應接枝到具有高度生物相容性的褐藻酸鈉(sodium alginate)上,形成鄰苯二酚-褐藻酸鈉(catechol-alginate)。將此高分子和高碘酸鈉(NaIO4)混合,形成一種可注射式水膠。透過成膠時間、機械性質、組織拉伸、爆破壓力、以及細胞毒性的測試之後,確認我們研發的水膠具有適當黏性並且不具有細胞毒性,以利於應用在組織定位、修補肺部等臨床手術上。
zh_TW
dc.description.abstractLung cancer is the most commonly occurring cancer in the world. To lower the mortality rate of lung cancer. Most of the early-stage lung tumors only present as small pulmonary nodules, which can be diagnosed by low-dose CT (LDCT).These nodules are too small to be observed through the naked eye or palpation during the resection surgery, so the radiologist usually locates the patient's nodules by implanting hookwire, or applying patent blue dye to the lesion before the surgical resection. However, the current localizing method not only cause pneumothorax but also bring fear and uncomfortable to patient due to the exposing hookwire outside patient's chest. The water-soluble dyes also spread when the patient breathes or moves, resulting in inaccurate or failure of pulmonary nodules localization. Thus, we have developed a colored adhesive hydrogel, which can be firmly adhered to the lesion after injection into the patient's lungs. Furthermore, it can block the injection hole to reduce the chance of pneumothorax, replacing the dye and hooked wire as a new material apply on pulmonary nodules localization.
Recently, researches have showed that mussel can adhere to the surface of different materials in aqueous environment, due to the secretion of mucus containing a large amount of catechol group. Catechol can form covalent bonds and non-covalent bonds with the surface of inorganic and organic substances to generate adhesive ability. Therefore, we conjugated dopamine onto sodium alginate via EDC/NHS reaction to form catechol-sodium alginate. This polymer is mixed with sodium periodate (NaIO4) to form an injectable hydrogel. After testing the gelation time, mechanical properties, lap shear stress, burst pressure, and cytotoxicity, we confirmed that this hydrogel is biocompatible with appropriate adhesion ability for pulmonary nodules localization, and also be able to prevent pneumothorax.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:43:13Z (GMT). No. of bitstreams: 1
U0001-2407202015260900.pdf: 17042611 bytes, checksum: 9c3c5686cb4f70ff697aecc7982e714e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES VII
CHAPTER 1. INTRODUCTION 1
1.1 PULMONARY NODULE LOCALIZATION 1
1.1.1 CT-guided Hook Wire Localization of Lung Lesions 2
1.1.2 patent blue 4
1.1.3 Iatrogenic Pneumothorax 5
1.2 MUSSEL-INSPIRED ADHESIVE 6
1.2.1 Catechol chemistry 7
1.2.2 Catechol-based tissue adhesive 9
1.2.3 Sodium alginate 10
1.2.4 Catechol-conjugated alginate 11
CHAPTER 2. MATERIALS AND METHODS 13
2.1 SYNTHESIS OF CATECHOL-MODIFIED ALGINATES (C-ALG) 13
2.2 CHARACTERIZATION OF C-ALG 13
2.3 ADHESIVE HYDROGEL FORMATION 14
2.4 GELATION TIME 14
2.5 MECHANICAL CHARACTERISTICS OF C-ALG HYDROGEL 15
2.6 C-ALG HYDROGEL SWELLING EXPERIMENT 15
2.7 CYTOTOXICITY TEST OF C-ALG HYDROGEL 16
2.8 MORPHOLOGICAL CHARACTERISTICS OF HS68 CULTURING WITH C-ALG HYDROGEL 17
2.9 LAP SHEAR STRESS 18
2.10 BURSTING PRESSURE 19
2.11 LOCALIZING ABILITY OF C-ALG 19
2.12 STATISTICAL ANALYSIS 20
2.13 MATERIALS 21
2.14 EQUIPMENT 22
CHAPTER 3. RESULTS 23
3.1 CHARACTERIZATION OF C-ALG 23
3.2 GELATION OF C-ALG VIA NAIO4 CROSSLINKING 23
3.3 RHEOLOGICAL PROPERTIES OF C-ALG HYDROGELS. 24
3.4 SWELLING BEHAVIOR OF C-ALG 25
3.5 IN VITRO AND MORPHOLOGICAL CYTOCOMPATIBILITY ANALYSIS 25
3.6 TISSUE-ADHESIVE BEHAVIOR AND BURSTING PRESSURE TEST OF C-ALG 26
3.7. LOCALIZING ABILITY OF C-ALG 27
CHAPTER 4. DISCUSSION 28
CHAPTER 5. CONCLUSION 33
TABLES 34
FIGURES 35
REFERENCES 45
dc.language.isoen
dc.subject鄰苯二酚zh_TW
dc.subject肺癌定位zh_TW
dc.subject氣胸zh_TW
dc.subject黏性水膠zh_TW
dc.subject褐藻酸鈉zh_TW
dc.subject低劑量斷層掃描zh_TW
dc.subject肺結節zh_TW
dc.subjectLow-dose CTen
dc.subjectpneumothoraxen
dc.subjectadhesive hydrogelen
dc.subjectalginateen
dc.subjectcatecholen
dc.subjectPulmonary nodules localizationen
dc.subjectPulmonary nodulesen
dc.title肺腫瘤手術定位膠開發
zh_TW
dc.title
Development of Localizing Hydrogel for Operation of Pulmonary nodules surgery
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳克誠(Ke-Cheng Chen), 鄭乃禎(Nai-Chen Cheng)
dc.subject.keyword肺癌定位,低劑量斷層掃描,肺結節,鄰苯二酚,褐藻酸鈉,黏性水膠,氣胸,zh_TW
dc.subject.keywordPulmonary nodules localization,Low-dose CT,Pulmonary nodules,catechol,alginate,adhesive hydrogel,pneumothorax,en
dc.relation.page49
dc.identifier.doi10.6342/NTU202001831
dc.rights.note未授權
dc.date.accepted2020-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2407202015260900.pdf
  未授權公開取用
16.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved