Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorJo-An Wangen
dc.contributor.author王若安zh_TW
dc.date.accessioned2021-07-10T21:43:08Z-
dc.date.available2021-07-10T21:43:08Z-
dc.date.copyright2020-07-31
dc.date.issued2020
dc.date.submitted2020-07-28
dc.identifier.citation1. Oliveira, J.M. and R.L. Reis, Regenerative strategies for the treatment of knee joint disabilities. Vol. 21. 2017: Springer.
2. LaBella, C.R., W. Hennrikus, and T.E. Hewett, Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics, 2014. 133(5): p. e1437-e1450.
3. Rudolph, K.S., et al., Dynamic stability in the anterior cruciate ligament deficient knee. Knee surgery, sports traumatology, arthroscopy, 2001. 9(2): p. 62-71.
4. Li, G., et al., The effects of ACL deficiency on mediolateral translation and varus–valgus rotation. Acta orthopaedica, 2007. 78(3): p. 355-360.
5. Daniel, D.M., et al., Fate of the ACL-injured patient: a prospective outcome study. The American journal of sports medicine, 1994. 22(5): p. 632-644.
6. Albright, J., et al., Knee and leg: soft tissue trauma. Orthopaedic knowledge update, 1999. 6: p. 533-59.
7. Bradley, J.P., et al., Anterior cruciate ligament injuries in the National Football League: epidemiology and current treatment trends among team physicians. Arthroscopy: The Journal of Arthroscopic Related Surgery, 2002. 18(5): p. 502-509.
8. Mall, N.A., et al., Incidence and trends of anterior cruciate ligament reconstruction in the United States. The American journal of sports medicine, 2014. 42(10): p. 2363-2370.
9. Yoshida, R., M. Cheng, and M.M. Murray, Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture. J Orthop Res, 2014. 32(2): p. 291-5.
10. Tears, A.C.L., Hughston Health Alert. 2019.
11. Neyret, P., S. Donell, and H. Dejour, Results of partial meniscectomy related to the state of the anterior cruciate ligament. Review at 20 to 35 years. The Journal of bone and joint surgery. British volume, 1993. 75(1): p. 36-40.
12. Casteleyn, P.-P. and F. Handelberg, Non-operative management of anterior cruciate ligament injuries in the general population. The Journal of bone and joint surgery. British volume, 1996. 78(3): p. 446-451.
13. Kannus, P. and M. Järvinen, Conservatively treated tears of the anterior cruciate ligament. Long-term results. JBJS, 1987. 69(7): p. 1007-1012.
14. Meunier, A., M. Odensten, and L. Good, Long‐term results after primary repair or non‐surgical treatment of anterior cruciate ligament rupture: A randomized study with a 15‐year follow‐up. Scandinavian journal of medicine science in sports, 2007. 17(3): p. 230-237.
15. Murray, M.M., et al., Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen–platelet‐rich plasma scaffold. Journal of Orthopaedic Research, 2007. 25(8): p. 1007-1017.
16. Dhillon, M.S., et al., Can Platelet rich plasma stimulate human ACL growth in culture? A preliminary experience. Muscles, ligaments and tendons journal, 2015. 5(3): p. 156.
17. Aglietti, P., et al., Patellar tendon versus doubled semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction. The American journal of sports medicine, 1994. 22(2): p. 211-218.
18. Rudolph, K.S., et al., Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc, 2001. 9(2): p. 62-71.
19. Uchida, R., et al., Biological Augmentation of ACL Repair and Reconstruction: Current Status and Future Perspective. Sports Medicine and Arthroscopy Review, 2020. 28(2): p. 49-55.
20. Soreide, E., et al., A multi-chamber tissue culture device for load-dependent parallel evaluation of tendon explants. BMC musculoskeletal disorders, 2019. 20(1): p. 549.
21. Alsousou, J. and P. Harrison, Therapeutic Platelet-Rich Plasma in Wound Healing, in Platelets. 2019, Elsevier. p. 1161-1171.
22. Kunze, K.N., et al., Platelet-rich plasma for muscle injuries: A systematic review of the basic science literature. World journal of orthopedics, 2019. 10(7): p. 278.
23. Xie, X., et al., A meta-analysis of bone–patellar tendon–bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. The Knee, 2015. 22(2): p. 100-110.
24. Hu, J., et al., Allograft versus autograft for anterior cruciate ligament reconstruction: an up-to-date meta-analysis of prospective studies. International orthopaedics, 2013. 37(2): p. 311-320.
25. Cheng, M., et al., Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Engineering Part A, 2010. 16(5): p. 1479-1489.
26. McNicol, A. and J.M. Gerrard, Platelet morphology, aggregation, and secretion, in Advances in molecular and cell biology. 1997, Elsevier. p. 1-29.
27. Lefrançais, E., et al., The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 2017. 544(7648): p. 105-109.
28. Nishimura, S., et al., IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. Journal of Cell Biology, 2015. 209(3): p. 453-466.
29. Long, M.W. Megakaryocyte differentiation events. in Seminars in hematology. 1998.
30. Holinstat, M., Normal platelet function. Cancer Metastasis Rev, 2017. 36(2): p. 195-198.
31. JIN, R.C., B. Voetsch, and J. Loscalzo, Endogenous mechanisms of inhibition of platelet function. Microcirculation, 2005. 12(3): p. 247-258.
32. Cavallo, C., et al., Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed Res Int, 2016. 2016: p. 6591717.
33. Massini, P., R. Käser-Glanzmann, and E. Lüscher, Movement of calcium ions and their role in the activation of platelets. Thrombosis and haemostasis, 1978. 40(01): p. 212-218.
34. Brass, L.F., Thrombin and platelet activation. Chest, 2003. 124(3): p. 18S-25S.
35. De Pascale, M.R., et al., Platelet derivatives in regenerative medicine: an update. Transfus Med Rev, 2015. 29(1): p. 52-61.
36. Everts, P.A., et al., Platelet-rich plasma and platelet gel: a review. The Journal of extra-corporeal technology, 2006. 38(2): p. 174.
37. Marx, R.E., Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant dentistry, 2001. 10(4): p. 225-228.
38. Eppley, B.L., W.S. Pietrzak, and M. Blanton, Platelet-rich plasma: a review of biology and applications in plastic surgery. Plastic and reconstructive surgery, 2006. 118(6): p. 147e-159e.
39. Arpornmaeklong, P., et al., Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. International journal of oral and maxillofacial surgery, 2004. 33(1): p. 60-70.
40. Dhillon, M.S., et al., Orthobiologics and platelet rich plasma. Indian journal of orthopaedics, 2014. 48(1): p. 1.
41. Fernandes, G., et al., Combination of Controlled Release Platelet-Rich Plasma Alginate Beads and Bone Morphogenetic Protein-2 Genetically Modified Mesenchymal Stem Cells for Bone Regeneration. J Periodontol, 2016. 87(4): p. 470-80.
42. Fitzpatrick, J., et al., Analysis of Platelet-Rich Plasma Extraction: Variations in Platelet and Blood Components Between 4 Common Commercial Kits. Orthop J Sports Med, 2017. 5(1): p. 2325967116675272.
43. Seeger, M.A. and A.S. Paller, The roles of growth factors in keratinocyte migration. Advances in wound care, 2015. 4(4): p. 213-224.
44. Greenhalgh, D.G., The role of growth factors in wound healing. Journal of Trauma and Acute Care Surgery, 1996. 41(1): p. 159-167.
45. De Pascale, M.R., et al., Platelet derivatives in regenerative medicine: an update. Transfusion medicine reviews, 2015. 29(1): p. 52-61.
46. Barrientos, S., et al., Growth factors and cytokines in wound healing. Wound repair and regeneration, 2008. 16(5): p. 585-601.
47. Powers, C., S. McLeskey, and A. Wellstein, Fibroblast growth factors, their receptors and signaling. Endocrine-related cancer, 2000. 7(3): p. 165-197.
48. Tokumaru, S., et al., Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. The Journal of cell biology, 2000. 151(2): p. 209-220.
49. Bao, P., et al., The role of vascular endothelial growth factor in wound healing. Journal of Surgical Research, 2009. 153(2): p. 347-358.
50. Piccin, A., et al., Platelet gel: a new therapeutic tool with great potential. Blood Transfus, 2017. 15(4): p. 333-340.
51. Gentile, P., et al., Evaluation of Not-Activated and Activated PRP in Hair Loss Treatment: Role of Growth Factor and Cytokine Concentrations Obtained by Different Collection Systems. Int J Mol Sci, 2017. 18(2).
52. <BBI0022.0_081508.pdf>.
53. Kushida, S., et al., Utilization of platelet-rich plasma for a fistula with subcutaneous cavity following septic bursitis: a case report. Eplasty, 2015. 15.
54. Moreno, R., et al., [Methods to obtain platelet-rich plasma and osteoinductive therapeutic use]. Farm Hosp, 2015. 39(3): p. 130-6.
55. Scherer, S.S., et al., Nonactivated versus thrombin-activated platelets on wound healing and fibroblast-to-myofibroblast differentiation in vivo and in vitro. Plastic and reconstructive surgery, 2012. 129(1): p. 46e-54e.
56. Engebretsen, L., et al., IOC consensus paper on the use of platelet-rich plasma in sports medicine. South African Journal of Sports Medicine, 2011. 23(4): p. 123-134.
57. Marx, R.E., et al., Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1998. 85(6): p. 638-646.
58. Sassoli, C., et al., Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell and tissue research, 2018. 372(3): p. 549-570.
59. Takamura, M., et al., The effect of platelet-rich plasma on Achilles tendon healing in a rabbit model. Acta orthopaedica et traumatologica turcica, 2017. 51(1): p. 65-72.
60. Wiegerinck, J.I., et al., Injection techniques of platelet-rich plasma into and around the Achilles tendon a cadaveric study. The American journal of sports medicine, 2011. 39(8): p. 1681-1687.
61. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126.
62. Fernández Farrés, I. and I.T. Norton, Formation kinetics and rheology of alginate fluid gels produced by in-situ calcium release. Food Hydrocolloids, 2014. 40: p. 76-84.
63. Fan, L., et al., Preparation and characterization of sodium alginate modified with collagen peptides. Carbohydr Polym, 2013. 93(2): p. 380-5.
64. Gao, Y. and X. Jin, Dual Crosslinked Methacrylated Alginate Hydrogel Micron Fibers and Tissue Constructs for Cell Biology. Mar Drugs, 2019. 17(10).
65. Pawar, S.N., Chemical Modification of Alginate, in Seaweed Polysaccharides. 2017. p. 111-155.
66. Sun, J. and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel), 2013. 6(4): p. 1285-1309.
67. Kuo, C.K. and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6): p. 511-521.
68. Ruvinov, E., J. Leor, and S. Cohen, The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 2010. 31(16): p. 4573-4582.
69. Morris, E.R., et al., Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydrate research, 1978. 66(1): p. 145-154.
70. Sikorski, P., et al., Evidence for egg-box-compatible interactions in calcium− alginate gels from fiber X-ray diffraction. Biomacromolecules, 2007. 8(7): p. 2098-2103.
71. Donati, I., et al., New hypothesis on the role of alternating sequences in calcium− alginate gels. Biomacromolecules, 2005. 6(2): p. 1031-1040.
72. Braccini, I. and S. Pérez, Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2001. 2(4): p. 1089-1096.
73. Chen, L., et al., Drug-Loadable Calcium Alginate Hydrogel System for Use in Oral Bone Tissue Repair. Int J Mol Sci, 2017. 18(5).
74. Huang, Y., et al., Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules, 2015. 16(11): p. 3499-3507.
75. Yan, J., et al., Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering: C, 2016. 63: p. 274-284.
76. Lin, S.S., et al. Controlled release of PRP-derived growth factors promotes osteogenic differentiation of human mesenchymal stem cells. in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. 2006. IEEE.
77. Lu, H.H., et al., Controlled delivery of platelet‐rich plasma‐derived growth factors for bone formation. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2008. 86(4): p. 1128-1136.
78. Rodriguez, I.A., et al., Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy. BioMed research international, 2014. 2014.
79. Sun, J. and H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials, 2013. 6(4): p. 1285-1309.
80. Growney Kalaf, E.A., et al., Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications. Mater Sci Eng C Mater Biol Appl, 2016. 63: p. 198-210.
81. <WO2017153947A1.pdf>.
82. Tsien, R.Y., New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry, 1980. 19(11): p. 2396-2404.
83. Marks, P.W. and F.R. Maxfield, Preparation of solutions with free calcium concentration in the nanomolar range using 1, 2-bis (o-aminophenoxy) ethane-N, N, N′, N′-tetraacetic acid. Analytical biochemistry, 1991. 193(1): p. 61-71.
84. He, H.Z., et al., Synthesis of New BAPTA Calcium Chelators. Synthetic Communications, 2009. 39(12): p. 2074-2081.
85. Bootman, M.D., et al., Deleterious effects of calcium indicators within cells; an inconvenient truth. Cell Calcium, 2018. 73: p. 82-87.
86. Brunet-Maheu, J.M., et al., Pluronic F-127 as a cell carrier for bone tissue engineering. J Biomater Appl, 2009. 24(3): p. 275-87.
87. Gupta, A., et al., Surgical retrieval, isolation and in vitro expansion of human anterior cruciate ligament-derived cells for tissue engineering applications. J Vis Exp, 2014(86).
88. Lee, C., et al., Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules, 2013. 14(6): p. 2004-13.
89. Matyash, M., et al., Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Tissue Eng Part C Methods, 2014. 20(5): p. 401-11.
90. Ye, Y., et al., Modification of Alginate Hydrogel Films for Delivering Hydrophobic Kaempferol. Journal of Nanomaterials, 2019. 2019: p. 1-8.
91. Nin, J.R.V., et al., Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy: The Journal of Arthroscopic Related Surgery, 2009. 25(11): p. 1206-1213.
92. Sánchez, M., et al., Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy: The Journal of Arthroscopic Related Surgery, 2010. 26(4): p. 470-480.
93. Figueroa, D., et al., Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction using autologous platelet concentrate. Arthroscopy: The Journal of Arthroscopic Related Surgery, 2010. 26(10): p. 1318-1325.
94. Seeger, M.A. and A.S. Paller, The Roles of Growth Factors in Keratinocyte Migration. Adv Wound Care (New Rochelle), 2015. 4(4): p. 213-224.
95. Cheng, M., et al., Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Eng Part A, 2010. 16(5): p. 1479-89.
96. Fallouh, L., et al., Effects of autologous platelet-rich plasma on cell viability and collagen synthesis in injured human anterior cruciate ligament. JBJS, 2010. 92(18): p. 2909-2916.
97. Kawasumi, M., et al., The effect of the platelet concentration in platelet-rich plasma gel on the regeneration of bone. The Journal of bone and joint surgery. British volume, 2008. 90(7): p. 966-972.
98. Rehm, B.H.A., Alginates: Biology and Applications. 2009: Springer Berlin Heidelberg.
99. Franck, A. and T.I. Germany, Viscoelasticity and dynamic mechanical testing. TA Instruments, New Castle, DE, USA AN004, 1993.
100. Duan, P., et al., Rheological characterization of alginate based hydrogels for tissue engineering. MRS Advances, 2017. 2(24): p. 1309-1314.
101. Farrés, I.F. and I. Norton, Formation kinetics and rheology of alginate fluid gels produced by in-situ calcium release. Food Hydrocolloids, 2014. 40: p. 76-84.
102. El-Kamel, A., O. Al-Gohary, and E. Hosny, Alginate-diltiazem hydrochloride beads: optimization of formulation factors, in vitro and in vivo availability. Journal of microencapsulation, 2003. 20(2): p. 211-225.
103. Zam, W., et al., Alginate-pomegranate peels' polyphenols beads: effects of formulation parameters on loading efficiency. Brazilian Journal of Pharmaceutical Sciences, 2014. 50(4): p. 741-748.
104. Lee, G.M., et al., Effect of calcium chloride treatment on hybridoma cell viability and growth. Biotechnology letters, 1992. 14(10): p. 891-896.
105. Amaral, K., et al., Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture. International endodontic journal, 2007. 40(5): p. 338-343.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77006-
dc.description.abstract目前在臨床上,前十字韌帶 (Anterior Cruciate Ligament, ACL) 斷裂常利用重建手術來修復,主要是將病人自體的髕骨肌腱或後腿肌腱取代受傷之組織。然而手術時並無法修復受損的血管,因此組織會長期處於低氧氣及低養分的環境中,使得術後修復的時間及癒合效果都會受到影響。也因為這樣目前有許多研究常常會使用生物活性物質(例如:血小板濃厚液 (platelet-rich plasma, PRP))來促進前十字韌帶修復。
血小板濃厚液 (platelet-rich plasma, PRP) 是一種富含多種生長因子、蛋白質等物質,常用於刺激骨骼、軟骨、韌帶、肌腱、肌肉等組織再生,可利用其特質來加速前十字韌帶斷裂術後修復的癒合。
PRP容易因為其高流動性,而無法在注射於患部時長時間的停留在人體內。若是能夠利用水膠交聯系統,將PRP包覆在內並延長其停留在體內的時間,來達到緩慢釋放的效果。除此之外,為了能夠使水膠和PRP在手術中簡便的混合製備,將會設計一混合裝置使其能於單一系統中混合均勻,並且能將製備好的水膠直接置於病人體內,以達到緩慢釋放PRP來修復傷口。
zh_TW
dc.description.abstractCurrently in clinical, Anterior Cruciate Ligament (ACL) reconstruction surgery often replaces the injured tissue by using patient's own iliac tendon or hind leg tendon. However, due to the surgery are without the blood vessel repairment, tissues might have a long-term exposure to low-oxygen and low-nutrient after surgery, therefore, the repair time and healing will be affected. It is why there are many researches about using bioactive substances such as Platelet-Rich-Plasma (PRP) to enhance ACL healing.
PRP is rich in a variety of growth factors (GFs), proteins and other substances, and it’s often used to stimulate bone, cartilage, ligament, tendon, muscle and other tissue regeneration. It is therefore expected to accelerate the healing of the ACL after its rupture. However, due to the high fluidity of PRP, it is hard to stay in the body for a long time when inject into the affected part. If the PRP can be encapsulated into the hydrogel by cross-linking, the retention time of PRP in the body's may also be prolonging. Therefore, the healing of ACL can also be enhanced through slow release PRP when use PRP treatment after surgery. In addition, in order to easily prepare PRP and hydrogel in one system during the surgery, we design a mixing device that can directly place the PRP hydrogel which is already mixed into the patient and slow release PRP for repairing wound.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:43:08Z (GMT). No. of bitstreams: 1
U0001-2707202000005900.pdf: 2772154 bytes, checksum: 20a2fc7d6294c4ec65e5bbb6e869e2d8 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract v
Contents vi
List of Schemes x
List of Tables xi
List of Figures xii
Chapter 1. Introduction 1
1.1 Knee joint 1
1.2 Anterior Cruciate Ligament (ACL) 2
1.2.1 ACL injury 3
1.2.2 ACL treatment 5
1.2.3 ACL reconstruction 6
1.2.4 ACL rehabilitation after surgery 7
1.3 Platelet biology 7
1.3.1 Platelet function 8
1.3.2 Platelet activation 9
1.4 Platelet-Rich plasma (PRP) 10
1.4.1 PRP Preparation 12
1.4.2 PRP applications 13
1.5 Alginate 14
1.5.1 Alginate hydrogel applications 16
1.5.2 Alginate PRP hydrogel applications 17
1.5.3 Slow gelation of alginate PRP hydrogel 17
1.6 Chelator 18
1.6.1 1,2-Bis (o- aminophenoxy) ethane-N, N, N’, N’-tetraacetic Acid 20
Chapter 2. Materials and methods 21
Materials 21
Chemicals and Reagents 21
Cell Culture 21
Experimental Equipment 22
Methods 23
2.1 Preparation of PRP 23
2.2 Biological studies 25
2.2.1 Preparation of human ACL (hACL) cells 25
2.2.2 hACL cells culture 26
2.2.3 The treatment of hACL cells by PRP 26
2.3 Sample preparation 26
2.3.1 Preparation of Chelator-Alginate (CA) -PRP (CAP) hydrogels 26
2.3.2 CAP hydrogel kit preparation process 27
2.4 Physical characteristic of CA hydrogels 28
2.4.1 Rheological property 28
2.5 Loading efficiency (%) 28
2.6 In-vitro PRP treatment model 29
2.6.1 In-vitro PRP release of the CAP hydrogels 29
2.6.2 In-vitro cytotoxicity of the CA hydrogels 30
2.6.3 Cell viability of CAP hydrogels 31
Chapter 3. Results 32
3.1 Preparation of PRP 32
3.2 Cell viability of hACL cells 32
3.3 CAP hydrogel kit 32
3.4 Rheological properties of CA hydrogels 33
3.5 PRP Loading efficiency (%) of CAP hydrogels 34
3.6 PRP cumulative release of CAP hydrogels 35
3.7 In-vitro cytotoxicity of CA hydrogels 36
3.8 In-vitro cell viability of CAP hydrogels 37
3.9 Statistical analysis 37
Chapter 4. Discussion 38
4.1 Cell viability of hACL cells 38
4.2 CAP hydrogel kit 39
4.3 Characteristic of the CA hydrogels 39
4.4 PRP Loading efficiency (%) of CAP hydrogels 41
4.5 PRP in-vitro cumulative release 41
4.6 In-vitro cytotoxicity assay 44
4.7 In-vitro cell viability of CAP hydrogels 44
Chapter 5. Conclusion 46
Reference: 48
dc.language.isoen
dc.subject交聯zh_TW
dc.subject血小板濃厚液zh_TW
dc.subject生長因子zh_TW
dc.subject水膠zh_TW
dc.subject緩慢釋放zh_TW
dc.subject混合裝置zh_TW
dc.subjecthydrogelen
dc.subjectmixing deviceen
dc.subjectPRPen
dc.subjectslow releaseen
dc.subjectgrowth factorsen
dc.subjectcross-linkingen
dc.title開發緩釋血小板濃縮液之水膠套件以促進肌腱韌帶組織術後之癒合
zh_TW
dc.titleDevelopment of a hydrogel kit for slow release platelet-rich-plasma to promote postoperative healing of tendon and ligament tissueen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor王至弘(Jyh-Horng Wang)
dc.contributor.coadvisor-orcid王至弘(0000-0002-1531-5297)
dc.contributor.oralexamcommittee李亦宸(Yi-Chen Li),洪智煌(Chih-Huang Hung)
dc.subject.keyword血小板濃厚液,生長因子,水膠,交聯,緩慢釋放,混合裝置,zh_TW
dc.subject.keywordPRP,growth factors,hydrogel,cross-linking,slow release,mixing device,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202001880
dc.rights.note未授權
dc.date.accepted2020-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2707202000005900.pdf
  未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved