Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77005Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉旻禕(Helene Minyi Liu) | |
| dc.contributor.author | Yi-Chun Peng | en |
| dc.contributor.author | 彭奕淳 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:43:06Z | - |
| dc.date.available | 2021-07-10T21:43:06Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-27 | |
| dc.identifier.citation | 1. O. Takeuchi, S. Akira, Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010). 2. S. Pandey, T. Kawai, S. Akira, Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 7, a016246 (2014). 3. C. A. Janeway, Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1, 1-13 (1989). 4. S. W. Brubaker, K. S. Bonham, I. Zanoni, J. C. Kagan, Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33, 257-290 (2015). 5. H. M. Lazear, J. W. Schoggins, M. S. Diamond, Shared and Distinct Functions of Type I and Type III Interferons. Immunity 50, 907-923 (2019). 6. X. Tan, L. Sun, J. Chen, Z. J. Chen, Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annu Rev Microbiol 72, 447-478 (2018). 7. N. R. Lee et al., Activation of RIG-I-Mediated Antiviral Signaling Triggers Autophagy Through the MAVS-TRAF6-Beclin-1 Signaling Axis. Front Immunol 9, 2096 (2018). 8. M. Lamkanfi, V. M. Dixit, Mechanisms and functions of inflammasomes. Cell 157, 1013-1022 (2014). 9. J. C. Kagan, V. G. Magupalli, H. Wu, SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev Immunol 14, 821-826 (2014). 10. J. Deguine, G. M. Barton, MyD88: a central player in innate immune signaling. F1000Prime Rep 6, 97 (2014). 11. K. S. Bonham et al., A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction. Cell 156, 705-716 (2014). 12. S. C. Lin, Y. C. Lo, H. Wu, Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885-890 (2010). 13. T. Ve et al., Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat Struct Mol Biol 24, 743-751 (2017). 14. R. Medzhitov, T. Horng, Transcriptional control of the inflammatory response. Nat Rev Immunol 9, 692-703 (2009). 15. N. J. Nilsen et al., A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem 290, 3209-3222 (2015). 16. S. He, Y. Liang, F. Shao, X. Wang, Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108, 20054-20059 (2011). 17. J. Rehwinkel et al., RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397-408 (2010). 18. R. Fang et al., MAVS activates TBK1 and IKKepsilon through TRAFs in NEMO dependent and independent manner. PLoS Pathog 13, e1006720 (2017). 19. F. Hou et al., MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461 (2011). 20. R. E. Vance, R. R. Isberg, D. A. Portnoy, Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10-21 (2009). 21. K. R. Rodriguez, A. M. Bruns, C. M. Horvath, MDA5 and LGP2: accomplices and antagonists of antiviral signal transduction. J Virol 88, 8194-8200 (2014). 22. K. M. Quicke, K. Y. Kim, C. M. Horvath, M. S. Suthar, RNA Helicase LGP2 Negatively Regulates RIG-I Signaling by Preventing TRIM25-Mediated Caspase Activation and Recruitment Domain Ubiquitination. J Interferon Cytokine Res 39, 669-683 (2019). 23. M. Yoneyama et al., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730-737 (2004). 24. T. Kawai et al., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981-988 (2005). 25. R. B. Seth, L. Sun, C. K. Ea, Z. J. Chen, Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682 (2005). 26. K. A. Fitzgerald et al., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491-496 (2003). 27. S. Paz et al., Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell Mol Biol (Noisy-le-grand) 52, 17-28 (2006). 28. D. Panne, S. M. McWhirter, T. Maniatis, S. C. Harrison, Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch. J Biol Chem 282, 22816-22822 (2007). 29. V. Rousseau et al., Antiviral activity of autocrine interferon-beta requires the presence of a functional interferon type I receptor. J Interferon Cytokine Res 15, 785-789 (1995). 30. L. Velazquez, M. Fellous, G. R. Stark, S. Pellegrini, A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70, 313-322 (1992). 31. X. Y. Fu, D. S. Kessler, S. A. Veals, D. E. Levy, J. E. Darnell, Jr., ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci U S A 87, 8555-8559 (1990). 32. C. Knox, G. A. Luke, G. L. Blatch, E. R. Pesce, Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 160, 15-24 (2011). 33. H. M. Liu et al., The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528-537 (2012). 34. D. C. Beachboard et al., The small GTPase RAB1B promotes antiviral innate immunity by interacting with TNF receptor-associated factor 3 (TRAF3). J Biol Chem 294, 14231-14240 (2019). 35. M. Abdel-Nour et al., The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science 365, (2019). 36. J. P. Lin, Y. K. Fan, H. M. Liu, The 14-3-3eta chaperone protein promotes antiviral innate immunity via facilitating MDA5 oligomerization and intracellular redistribution. PLoS Pathog 15, e1007582 (2019). 37. K. Takashima, H. Oshiumi, M. Matsumoto, T. Seya, DNAJB1/HSP40 Suppresses Melanoma Differentiation-Associated Gene 5-Mitochondrial Antiviral Signaling Protein Function in Conjunction with HSP70. J Innate Immun 10, 44-55 (2018). 38. B. Bukau, J. Weissman, A. Horwich, Molecular chaperones and protein quality control. Cell 125, 443-451 (2006). 39. S. K. Amar et al., Sunscreen-induced expression and identification of photosensitive marker proteins in human keratinocytes under UV radiation. Toxicol Ind Health 35, 457-465 (2019). 40. H. S. Ban, T. S. Han, K. Hur, H. S. Cho, Epigenetic Alterations of Heat Shock Proteins (HSPs) in Cancer. Int J Mol Sci 20, (2019). 41. M. Semsar-Kazerouni, J. G. J. Boerrigter, W. Verberk, Changes in heat stress tolerance in a freshwater amphipod following starvation: The role of oxygen availability, metabolic rate, heat shock proteins and energy reserves. Comp Biochem Physiol A Mol Integr Physiol 245, 110697 (2020). 42. P. Martine, C. Rebe, Heat Shock Proteins and Inflammasomes. Int J Mol Sci 20, (2019). 43. A. Bolhassani, E. Agi, Heat shock proteins in infection. Clin Chim Acta 498, 90-100 (2019). 44. F. U. Hartl, J. Martin, Molecular chaperones in cellular protein folding. Curr Opin Struct Biol 5, 92-102 (1995). 45. J. Radons, The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21, 379-404 (2016). 46. M. E. Cheetham, A. J. Caplan, Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3, 28-36 (1998). 47. R. U. Mattoo et al., Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK. Front Mol Biosci 1, 7 (2014). 48. W. Zhang et al., Cellular DNAJA3, a Novel VP1-Interacting Protein, Inhibits Foot-and-Mouth Disease Virus Replication by Inducing Lysosomal Degradation of VP1 and Attenuating Its Antagonistic Role in the Beta Interferon Signaling Pathway. J Virol 93, (2019). 49. S. Y. Sohn, J. H. Kim, K. W. Baek, W. S. Ryu, B. Y. Ahn, Turnover of hepatitis B virus X protein is facilitated by Hdj1, a human Hsp40/DnaJ protein. Biochem Biophys Res Commun 347, 764-768 (2006). 50. S. Y. Sohn, S. B. Kim, J. Kim, B. Y. Ahn, Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. J Gen Virol 87, 1883-1891 (2006). 51. J. Batra et al., Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Sci Rep 6, 19063 (2016). 52. Z. Guan et al., Interaction of Hsp40 with influenza virus M2 protein: implications for PKR signaling pathway. Protein Cell 1, 944-955 (2010). 53. K. Sharma et al., Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS One 6, e20215 (2011). 54. X. Cheng, M. Belshan, L. Ratner, Hsp40 facilitates nuclear import of the human immunodeficiency virus type 2 Vpx-mediated preintegration complex. J Virol 82, 1229-1237 (2008). 55. M. Couturier et al., High affinity binding between Hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an Hsp40 co-chaperone. J Mol Recognit 23, 301-315 (2010). 56. Z. Yi et al., Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator. PLoS Pathog 7, e1001255 (2011). 57. Y. Q. Cao et al., Hsp40 Protein DNAJB6 Interacts with Viral NS3 and Inhibits the Replication of the Japanese Encephalitis Virus. Int J Mol Sci 20, (2019). 58. Y. Pei et al., A Hsp40 chaperone protein interacts with and modulates the cellular distribution of the primase protein of human cytomegalovirus. PLoS Pathog 8, e1002968 (2012). 59. M. Qi, J. Zhang, W. Zeng, X. Chen, DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta 1839, 62-69 (2014). 60. W. Miao, L. Li, Y. Wang, A Targeted Proteomic Approach for Heat Shock Proteins Reveals DNAJB4 as a Suppressor for Melanoma Metastasis. Anal Chem 90, 6835-6842 (2018). 61. T. Acun et al., HLJ1 (DNAJB4) Gene Is a Novel Biomarker Candidate in Breast Cancer. OMICS 21, 257-265 (2017). 62. Y. Liu et al., HLJ1 is a novel biomarker for colorectal carcinoma progression and overall patient survival. Int J Clin Exp Pathol 7, 969-977 (2014). 63. Z. C. Uretmen Kagiali et al., Systems-level Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer. Mol Cell Proteomics 18, 1756-1771 (2019). 64. A. L. Davis et al., The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem 290, 1623-1638 (2015). 65. Y. Shi, D. D. Mosser, R. I. Morimoto, Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12, 654-666 (1998). 66. D. J. Perkins, S. N. Vogel, Space and time: New considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs). Cytokine 74, 171-174 (2015). 67. L. Zhang et al., Hepatitis B virus protein up-regulated HLJ1 expression via the transcription factor YY1 in human hepatocarcinoma cells. Virus Res 157, 76-81 (2011). 68. P. Mutz et al., HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology 154, 1791-1804 e1722 (2018). 69. S. Bakshi, J. Taylor, S. Strickson, T. McCartney, P. Cohen, Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon beta. Biochem J 474, 1163-1174 (2017). 70. L. Unterholzner, The interferon response to intracellular DNA: why so many receptors? Immunobiology 218, 1312-1321 (2013). 71. J. T. Wang et al., Glycogen synthase kinase 3 negatively regulates IFN regulatory factor 3 transactivation through phosphorylation at its linker region. Innate Immun 20, 78-87 (2014). 72. A. Larabi et al., Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep 3, 734-746 (2013). 73. B. Banoth, S. L. Cassel, Mitochondria in innate immune signaling. Transl Res 202, 52-68 (2018). 74. A. G. Goodman et al., P58(IPK): a novel 'CIHD' member of the host innate defense response against pathogenic virus infection. PLoS Pathog 5, e1000438 (2009). 75. H. Oshiumi et al., The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8, 496-509 (2010). 76. B. Liu et al., The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat Immunol 18, 214-224 (2017). 77. C. Castanier et al., MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10, 44 (2012). 78. S. Panda, J. A. Nilsson, N. O. Gekara, Deubiquitinase MYSM1 Regulates Innate Immunity through Inactivation of TRAF3 and TRAF6 Complexes. Immunity 43, 647-659 (2015). 79. G. Song et al., E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol 17, 1342-1351 (2016). 80. S. Liu et al., Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015). 81. S. Liu et al., MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2, e00785 (2013). 82. A. Peisley, B. Wu, H. Xu, Z. J. Chen, S. Hur, Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509, 110-114 (2014). 83. M. Pourcelot et al., The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol 14, 69 (2016). 84. W. J. van Zuylen et al., Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity. PLoS Pathog 8, e1002747 (2012). 85. K. Onoguchi et al., Virus-infection or 5'ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog 6, e1001012 (2010). 86. S. M. Horner, C. Wilkins, S. Badil, J. Iskarpatyoti, M. Gale, Jr., Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking. PLoS One 10, e0117963 (2015). 87. E. H. N. Tan, B. L. Tang, Rab7a and Mitophagosome Formation. Cells 8, (2019). 88. Z. Xu et al., 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 126, 4173-4186 (2013). 89. M. K. Dougherty, D. K. Morrison, Unlocking the code of 14-3-3. J Cell Sci 117, 1875-1884 (2004). 90. Z. Chen et al., Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9, 1586-1597 (1995). 91. M. Roff et al., Role of IkappaBalpha ubiquitination in signal-induced activation of NFkappaB in vivo. J Biol Chem 271, 7844-7850 (1996). 92. M. Karin, Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621-663 (2000). 93. K. Tanaka, T. Kawakami, K. Tateishi, H. Yashiroda, T. Chiba, Control of IkappaBalpha proteolysis by the ubiquitin-proteasome pathway. Biochimie 83, 351-356 (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77005 | - |
| dc.description.abstract | 近期諸多研究指出,伴護蛋白質 DNAJ/HSP40 家族,除了參與病毒感染宿主細胞後複製循環的調控,也參與調控宿主細胞先天性抗病毒免疫路徑,例如第一型干擾素抗病毒反應。當 RNA 病毒感染宿主細胞,宿主細胞的模式辨認受體 (pattern recognition receptors, PRRs) 之一如 RIG-I 會分辨認病毒核酸,進而活化下游第一型干擾素生成路徑,抵抗病毒感染與複製。本篇論文首次探討編碼來源為 DNAJB4 基因的伴護蛋白質 HLJ1 在此第一型干擾素生成路徑中所扮演的角色。起初,根據未發表的小鼠實驗,同樣注射脂多醣 (Lipopolysaccharide, LPS) 之下, DNAJB4 基因剔除小鼠的存活率顯著高於野生型小鼠,表示缺少 DNAJB4 基因下,小鼠體內類鐸受體 TLR4 調控的發炎反應程度較低,亦即伴護蛋白質 HLJ1 會正調控 TLR4 下游發炎反應路徑。有鑑於先前研究已知,除了發炎訊息路徑外, TLR4 的活化也會引發第一型干擾素生成路徑,於是我們在脂多醣刺激野生型小鼠纖維母細胞 (mouse embryonic fibroblasts, MEFs) 和 DNAJB4 基因剔除的小鼠纖維母細胞後,利用 RT-PCR 檢測兩細胞第一型干擾素 IFNβ 基因表現量,發現 DNAJB4 基因剔除小鼠細胞的 IFNβ 基因表現量明顯較低,也說明了 HLJ1 蛋白質可能參與調控第一型干擾素生成路徑。除了 TLR4 下游發炎路徑外,我們利用基因體為負股單鏈 RNA 病毒的仙台病毒分別感染野生型和 DNAJB4 基因剔除小鼠纖維母細胞株,活化 RIG-I 下游之第一型干擾素生成路徑,結果發現相較於野生型,基因剔除小鼠細胞中的 IFNβ 基因表現明顯較低,且仙台病毒基因體複製程度較高,表示 DNAJB4 基因的缺失會導致 RIG-I 下游之第一型干擾素生成減少,並使得宿主細胞抗病毒能力下降;此外,從 Immunoblotting 實驗結果得知,在仙台病毒感染兩小鼠細胞下,p-IRF3 (第一型干擾素轉錄因子 IRF3 活化態)在 DNAJB4 基因剔除小鼠細胞中的相對量顯著較低,同樣顯示 DNAJB4 基因對於第一型干擾素生成路徑的重要性。除了利用小鼠細胞進行上述分析,我們也發現 Huh7 人類肝癌細胞株逐步提升 HLJ1 蛋白質外源表現並在仙台病毒感染細胞下, IFNβ 啟動子活化程度也隨之提升,再次顯示 HLJ1 蛋白質正調控第一型干擾素生成路徑。為了進一步探討 HLJ1 蛋白質調控第一型干擾素生成路徑的分子機制,我們在 Huh7 細胞株中成雙外源表現 HLJ1 和第一型干擾素生成路徑之訊息傳遞分子,下游至上游依序為 IRF3-5D (擬活化態轉錄因子)、TBK1、MAVS,結果發現,當同時外源表現 IRF3-5D 和 TBK1 活化下游第一型干擾素生成路徑下,即使逐步提升 HLJ1 蛋白質外源表現量,IFNβ 啟動子活化程度並沒有差異,然而,當外源表現 MAVS,逐步提升 HLJ1 蛋白質外源表現量,IFNβ 啟動子活化程度也隨之提升,表示 HLJ1 會正調控 TBK1 上游、 MAVS 下游的訊息傳遞分子。另外藉由細胞質/粒腺體離析實驗結合 Immunoblotting 分析得知,在仙台病毒感染下, HLJ1 蛋白質會從細胞質移動至粒腺體相關內質網膜,表示 HLJ1 蛋白質有可能參與調控 MAVS 信息小體 (signalosome)。最後,我們在外源 HLJ1 蛋白質免疫沉澱結合質譜蛋白質體學分析結果得知,在仙台病毒感染下活化第一型干擾素生成訊息傳遞路徑,可能與 HLJ1 交互作用一系列宿主蛋白質候選者身分,提供後續對於 HLJ1 蛋白質在第一型干擾素生成路徑中所扮演的調控角色更多啟發。 | zh_TW |
| dc.description.abstract | Heat shock proteins (HSPs) are a diverse group of chaperone proteins. Many of them have been proven to play key roles in response to the cellular stress conditions, such as infections or inflammations. HLJ1 encoded by the gene DNAJB4 (DnaJ Homolog, Subfamily B, Member 4) is one of the HSP40s. Previous studies showed that the depletion of DNAJB4/HLJ1 gene in mice led to the higher survival rate after lipopolysaccharide (LPS) treatment in vivo, suggesting that DNAJB4/HLJ1 could stimulate TLR4-mediated inflammatory responses. Besides inflammatory cytokines, type I interferon (IFN) is also regulated by TLR4 activation. Therefore, we monitored the relative mRNA levels of IFNβ, which belongs to the type I IFN, in the wild-type (WT) and the DNAJB4 gene-knock-out (DNAJB4 -/-) mice embryonic fibroblast cells (MEFs) respectively after LPS treatments. The results indicated that the IFNβ mRNA levels in the DNAJB4-/- MEFs were lower than those in the WT MEFs. Also, type I IFN expression triggered by Sendai virus (SenV) (ssRNA (+) virus) was also reduced in the DNAJB4-/- MEFs when compared to that in the WT MEFs. The phosphorylation of IRF3, which is the signaling active form of IRF3, was decreased in DNAJB4-/- MEFs compared with WT MEFs during SenV infection, revealing the role of DNAJB4/HLJ1 in promoting type I IFN induction signaling in response to viral infections. These results indicated that DNAJB4/HLJ1 could regulate type I IFN and/or antiviral signaling in the host cells. Furthermore, when ectopically expressed in the human hepatocyte cell line Huh7, DNAJB4/HLJ1 enhanced the IFNβ promoter activities in a protein dose-dependent manner in response to SenV infection. Our results showed that overexpression of DNAJB4 promotes the IFNβ promoter activities in the presence of MAVS but not TBK1, suggesting that DNAJB4/HLJ1 may regulate certain signaling molecules downstream of MAVS and upstream of TBK1 in type I IFN induction pathway. By cytosolic/MAM fractionation, we found that DNAJB4/HLJ1 was redistributed more to the mitochondrial/MAM fractions during SenV infection. We have identified several host proteins to interact with DNAJB4/HLJ1 in Huh7 cells in response to SenV infection by mass spectrometry analysis. The results from this analysis are anticipated to provide insights for us to further study the molecular mechanisms of how DNAJB4/HLJ1 regulates type I IFN pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:43:06Z (GMT). No. of bitstreams: 1 U0001-2707202010162900.pdf: 1936102 bytes, checksum: eb55fd34c12a2964c22d6e66119ef7a4 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要: 1 ABSTRACT: 3 TABLE OF CONTENTS 5 LIST OF FIGURES 9 CHAPTER 1: INTRODUCTION 11 1.1 Overview of the pattern recognition receptors (PRRs)-mediated innate immune responses 11 1.2 RIG-I-like (RLR) receptor family members 14 1.3 RIG-I-like (RLR)-mediated interferon induction signaling pathway and interferon response signaling pathway 15 1.4 Several chaperone proteins regulate type I IFN induction 17 1.5 The chaperone protein DNAJ/HSP40 family 18 1.6 Several DNAJ/HSP40 family members are involved in regulating viral propagation in host cells 20 1.7 Highly correlation between DNAJB1 and DNAJB4 21 1.8 Specific aim 22 CHAPTER 2: MATERIALS AND METHODS 24 2.1. Materials: 24 2.1.1. Cell line: 24 2.1.2. Competent cells 24 2.1.3 Virus 24 2.1.4 Plasmid 25 2.1.5 Reagent 25 2.1.6 Antibody 27 2.1.7 Commercial Kit 28 2.2. Methods 29 2.2.1 Cell culture 29 2.2.2 Transfection 29 2.2.3 Dual luciferase assay 30 2.2.4 Western blot 30 2.2.5 Sendai Virus cultivation 32 2.2.6 Sendai Virus infection 33 2.2.7 Mitochondria/Cytosol fractionation 33 2.2.8 RNA extraction 34 2.2.9 Real-time qPCR 35 2.2.10 Co-Immunoprecipitation (Co-IP) 36 2.2.11 Colloidal Blue Staining 37 2.2.12 V5-IP/MS 38 2.2.13 PCR amplification and Sub-Cloning: 39 CHAPTER 3: RESULTS 43 3.1. DNAJB4 was neither an interferon stimulatory gene (ISG) nor a SenV infection-inducible gene. 43 3.2. The loss of DNAJB4 gene reduced the TLR4-dependent type I IFN expression upon lipopolysaccharide (LPS) treatment. 44 3.3. DNAJB4/HLJ1 positively regulated RIG-I-mediated type I IFN induction signaling. 46 3.4. DNAJB4/HLJ1 was required for activation and phosphorylation of IRF3. 47 3.5. DNAJB4/HLJ1 enhanced the RIG-I-mediated signaling to IFNβ. 48 3.6. DNAJB4/HLJ1 positively regulated the molecules between MAVS and TBK1 in type I IFN pathway 49 3.7. DNAJB4/HLJ1 might re-localize to mitochondrial membranes or mitochondria-associated membranes (MAMs) in response to SenV infection. 50 3.8. Proteomic analysis of the DNAJB4/HLJ1 interactome network during Sendai virus infection 51 3.9. Use shRNA to silence the expression of HLJ1 at post-transcription levels. 53 CHAPTER 4: DISCUSSION 54 CHAPTER 5: REFERENCE 61 TABLE 1. PRIMER USED FOR SUB-CLONING: 80 TABLE 2. PLKO1. DNAJB4 SHRNA: 80 TABLE 3. RT-QPCR PRIMER: 81 APPENDIX 83 LIST OF FIGURES Figure 1. DNAJB4/HLJ1 was neither an ISG, nor SenV-infection-inducible gene. 69 Figure 2. The depletion of DNAJB4 gene resulted in decreased IFNβ mRNA expression during LPS treatment. 70 Figure 3. DNAJB4/HLJ1 positively regulated RIG-I-mediated type I IFN induction and IFN antiviral functions. 71 Figure 4. DNAJB4/HLJ1 is important for activation and phosphorylation of IRF3. 72 Figure 5. Ectopic Expression of DNAJB4/HLJ1 enhanced the IFNβ promoter activity during SenV infection. 73 Figure 6. DNAJB4/HLJ1 did not affect the IRF3-mediated IFNβ promoter activation 74 Figure 7. DNAJB4/HLJ1 did not affect the TBK1-mediated IFNβ promoter activation. 75 Figure 8. DNAJB4/HLJ1 enhances the IFNβ promoter activities when co-overexpressing MAVS. 76 Figure 9. DNAJB4/HLJ1 re-distributed to mitochondrial-associated membranes (MAM) in response to SenV infection. 77 Figure 10. V5-HLJ1 IP/MS proteomic analysis. 78 Figure 11. Deliver the shRNA into Huh7 cells through transfection of plasmids to silence the expression of HLJ1 at post-transcription levels. 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 正調控 | zh_TW |
| dc.subject | 伴護蛋白質 DNAJB4/HLJ1 | zh_TW |
| dc.subject | 第一型干擾素生成路徑 | zh_TW |
| dc.subject | chaperone protein DNAJB4/HLJ1 | en |
| dc.subject | positively regulate | en |
| dc.subject | type I IFN induction pathway | en |
| dc.title | 探討伴護蛋白質 DNAJB4/HLJ1 對第一型干擾素生成路徑之調控 | zh_TW |
| dc.title | The Regulation of Type I Interferon Induction Pathway by the Chaperone Protein DNAJB4/HLJ1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-5394-0309 | |
| dc.contributor.oralexamcommittee | 徐立中(Li-Chung Hsu),蘇剛毅(Kang-Yi Su),顏伯勳(Bo-Shiun Yan) | |
| dc.subject.keyword | 伴護蛋白質 DNAJB4/HLJ1,正調控,第一型干擾素生成路徑, | zh_TW |
| dc.subject.keyword | chaperone protein DNAJB4/HLJ1,positively regulate,type I IFN induction pathway, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202001891 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| Appears in Collections: | 生物化學暨分子生物學科研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2707202010162900.pdf Restricted Access | 1.89 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
