請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77001完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱繼輝(Kay-Hooi Khoo) | |
| dc.contributor.author | Yen-Ying Chen | en |
| dc.contributor.author | 陳彥穎 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:58Z | - |
| dc.date.available | 2021-07-10T21:42:58Z | - |
| dc.date.copyright | 2020-09-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | Abraham, D. J., R. Sidebothom, B. G. Winchester, P. R. Dorling and A. Dell (1983). 'Swainsonine affects the processing of glycoproteins in vivo.' FEBS Lett 163(1): 110-113. Agard, N. J. and C. R. Bertozzi (2009). 'Chemical approaches to perturb, profile, and perceive glycans.' Acc Chem Res 42(6): 788-797. Arumugham, R. G. and M. L. Tanzer (1983). 'Abnormal glycosylation of human cellular fibronectin in the presence of swainsonine.' J Biol Chem 258(19): 11883-11889. Balmana, M., S. Mereiter, F. Diniz, T. Feijao, C. C. Barrias and C. A. Reis (2018). 'Multicellular Human Gastric-Cancer Spheroids Mimic the Glycosylation Phenotype of Gastric Carcinomas.' Molecules 23(11). Belli, C., D. Trapani, G. Viale, P. D'Amico, B. A. Duso, P. Della Vigna, F. Orsi and G. Curigliano (2018). 'Targeting the microenvironment in solid tumors.' Cancer Treat Rev 65: 22-32. Benktander, J. D., S. T. Gizaw, S. Gaunitz and M. V. Novotny (2018). 'Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample.' J Am Soc Mass Spectrom 29(6): 1125-1137. Berthe, A., M. Zaffino, C. Muller, F. Foulquier, M. Houdou, C. Schulz, F. Bost, E. De Fay, S. Mazerbourg and S. Flament (2018). 'Protein N-glycosylation alteration and glycolysis inhibition both contribute to the antiproliferative action of 2-deoxyglucose in breast cancer cells.' Breast Cancer Res Treat 171(3): 581-591. Bierhuizen, M. F. A., H. Tedzes, W. E. C. M. Schiphorst, D. H. van den Eijnden and W. van Dijk (1988). 'Effect of α(2–6)-linked sialic acid and α(1–3)-linked fucose on the interaction ofN-linked glycopeptides and related oligosaccharides with immobilizedPhaseolus vulgaris leukoagglutinating lectin (L-PHA).' Glycoconjugate Journal 5(1): 85-97. Blanas, A., N. M. Sahasrabudhe, E. Rodriguez, Y. van Kooyk and S. J. van Vliet (2018). 'Fucosylated Antigens in Cancer: An Alliance toward Tumor Progression, Metastasis, and Resistance to Chemotherapy.' Front Oncol 8: 39. Byrd, J. C., R. Dahiya, J. Huang and Y. S. Kim (1995). 'Inhibition of mucin synthesis by benzyl-alpha-GalNAc in KATO III gastric cancer and Caco-2 colon cancer cells.' Eur J Cancer 31A(9): 1498-1505. Cazet, A., S. Julien, M. Bobowski, J. Burchell and P. Delannoy (2010). 'Tumour-associated carbohydrate antigens in breast cancer.' Breast Cancer Res 12(3): 204. Cenci di Bello, I., P. Dorling and B. Winchester (1983). 'The storage products in genetic and swainsonine-induced human mannosidosis.' Biochem J 215(3): 693-696. Chen, J. Y., H. H. Huang, S. Y. Yu, S. J. Wu, R. Kannagi and K. H. Khoo (2018). 'Concerted mass spectrometry-based glycomic approach for precision mapping of sulfo sialylated N-glycans on human peripheral blood mononuclear cells and lymphocytes.' Glycobiology 28(1): 9-20. Chen, L., J. Sundback, S. Olofsson and M. Jondal (2006). 'Interference with O-glycosylation in RMA lymphoma cells leads to a reduced in vivo growth of the tumor.' Int J Cancer 119(6): 1495-1500. Cheng, C. W., C. C. Chou, H. W. Hsieh, Z. Tu, C. H. Lin, C. Nycholat, M. Fukuda and K. H. Khoo (2015). 'Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans.' Anal Chem 87(12): 6380-6388. Chua, J. X. and L. Durrant (2017). Monoclonal Antibodies Against Tumour-Associated Carbohydrate Antigens. Carbohydrate. Colegate, S., P. Dorling and C. Huxtable (1979). 'A Spectroscopic Investigation of Swainsonine: An #945;-Mannosidase Inhibitor Isolated from <I>Swainsona canescens</I>.' Australian Journal of Chemistry 32(10): 2257-2264. Cummings, R. D., A. G. Darvill, M. E. Etzler and M. G. Hahn (2015). Glycan-Recognizing Probes as Tools. Essentials of Glycobiology. rd, A. Varki, R. D. Cummings et al. Cold Spring Harbor (NY): 611-625. Cummings, R. D. and S. Kornfeld (1982). 'Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins.' J Biol Chem 257(19): 11230-11234. Delannoy, P., I. Kim, N. Emery, C. De Bolos, A. Verbert, P. Degand and G. Huet (1996). 'Benzyl-N-acetyl-alpha-D-galactosaminide inhibits the sialylation and the secretion of mucins by a mucin secreting HT-29 cell subpopulation.' Glycoconj J 13(5): 717-726. Dorling, P. R., C. R. Huxtable and S. M. Colegate (1980). 'Inhibition of lysosomal alpha-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens.' Biochem J 191(2): 649-651. Dorling, P. R., C. R. Huxtable and P. Vogel (1978). 'Lysosomal storage in Swainsona spp. toxicosis: an induced mannosidosis.' Neuropathol Appl Neurobiol 4(4): 285-295. Elbein, A. D. (1984). 'Inhibitors of the biosynthesis and processing of N-linked oligosaccharides.' CRC Crit Rev Biochem 16(1): 21-49. Esko, J. D., C. Bertozzi and R. L. Schnaar (2015). Chemical Tools for Inhibiting Glycosylation. Essentials of Glycobiology. rd, A. Varki, R. D. Cummings et al. Cold Spring Harbor (NY): 701-712. Fernandes, B., U. Sagman, M. Auger, M. Demetrio and J. W. Dennis (1991). 'Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia.' Cancer Res 51(2): 718-723. Furukawa, K., K. Hamamura, Y. Ohkawa, Y. Ohmi and K. Furukawa (2012). 'Disialyl gangliosides enhance tumor phenotypes with differential modalities.' Glycoconj J 29(8-9): 579-584. Furukawa, K., Y. Ohmi, O. Tajima, Y. Ohkawa, Y. Kondo, J. Shuting, N. Hashimoto and K. Furukawa (2018). 'Gangliosides in Inflammation and Neurodegeneration.' Prog Mol Biol Transl Sci 156: 265-287. Giovannone, N., A. Antonopoulos, J. Liang, J. Geddes Sweeney, M. R. Kudelka, S. L. King, G. S. Lee, R. D. Cummings, A. Dell, S. R. Barthel, H. R. Widlund, S. M. Haslam and C. J. Dimitroff (2018). 'Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans.' Front Immunol 9: 2857. Gouyer, V., E. Leteurtre, P. Delmotte, W. F. Steelant, M. A. Krzewinski-Recchi, J. P. Zanetta, T. Lesuffleur, G. Trugnan, P. Delannoy and G. Huet (2001). 'Differential effect of GalNAcalpha-O-bn on intracellular trafficking in enterocytic HT-29 and Caco-2 cells: correlation with the glycosyltransferase expression pattern.' J Cell Sci 114(Pt 8): 1455-1471. Gouyer, V., E. Leteurtre, J. P. Zanetta, T. Lesuffleur, P. Delannoy and G. Huet (2001). 'Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNAcalpha-O-bn in mucosal cell lines: an effect mediated through the intracellular synthesis of complex GalNAcalpha-O-bn oligosaccharides.' Front Biosci 6: D1235-1244. Hakomori, S. (1984). 'Tumor-associated carbohydrate antigens.' Annu Rev Immunol 2: 103-126. Hakomori, S. (1996). 'Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism.' Cancer Res 56(23): 5309-5318. Hakomori, S. (2000). 'Traveling for the glycosphingolipid path.' Glycoconj J 17(7-9): 627-647. Hakomori, S. and Y. Zhang (1997). 'Glycosphingolipid antigens and cancer therapy.' Chem Biol 4(2): 97-104. Hakomori, S. I. (2000). 'Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain.' Glycoconj J 17(3 -4): 143-151. Han, L. and C. E. Costello (2013). 'Mass spectrometry of glycans.' Biochemistry (Mosc) 78(7): 710-720. Heffernan, M., R. Lotan, B. Amos, M. Palcic, R. Takano and J. W. Dennis (1993). 'Branching beta 1-6N-acetylglucosaminetransferases and polylactosamine expression in mouse F9 teratocarcinoma cells and differentiated counterparts.' J Biol Chem 268(2): 1242-1251. Heimburg-Molinaro, J., M. Lum, G. Vijay, M. Jain, A. Almogren and K. Rittenhouse-Olson (2011). 'Cancer vaccines and carbohydrate epitopes.' Vaccine 29(48): 8802-8826. Ho, M. Y., A. L. Yu and J. Yu (2017). 'Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications.' Glycoconj J 34(6): 765-777. Hsiao, C. T., P. W. Wang, H. C. Chang, Y. Y. Chen, S. H. Wang, Y. Chern and K. H. Khoo (2017). 'Advancing a High Throughput Glycotope-centric Glycomics Workflow Based on nanoLC-MS(2)-product Dependent-MS(3) Analysis of Permethylated Glycans.' Mol Cell Proteomics 16(12): 2268-2280. Huang, J., J. C. Byrd, W. H. Yoon and Y. S. Kim (1992). 'Effect of benzyl-alpha-GalNAc, an inhibitor of mucin glycosylation, on cancer-associated antigens in human colon cancer cells.' Oncol Res 4(11-12): 507-515. Huet, G., S. Hennebicq-Reig, C. de Bolos, F. Ulloa, T. Lesuffleur, A. Barbat, V. Carriere, I. Kim, F. X. Real, P. Delannoy and A. Zweibaum (1998). 'GalNAc-alpha-O-benzyl inhibits NeuAcalpha2-3 glycosylation and blocks the intracellular transport of apical glycoproteins and mucus in differentiated HT-29 cells.' J Cell Biol 141(6): 1311-1322. Huet, G., I. Kim, C. de Bolos, J. M. Lo-Guidice, O. Moreau, B. Hemon, C. Richet, P. Delannoy, F. X. Real and P. Degand (1995). 'Characterization of mucins and proteoglycans synthesized by a mucin-secreting HT-29 cell subpopulation.' J Cell Sci 108 ( Pt 3): 1275-1285. Ishizuka, A., Y. Hashimto, R. Naka, M. Kinoshita, K. Kakehi, J. Seino, Y. Funakoshi, T. Suzuki, A. Kameyama and H. Narimatsu (2008). 'Accumulation of free complex-type N-glycans in MKN7 and MKN45 stomach cancer cells.' Biochem J 413(2): 227-237. Itakura, Y., S. Nakamura-Tsuruta, J. Kominami, H. Tateno and J. Hirabayashi (2017). 'Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study.' Int J Mol Sci 18(6). Jacob, G. S. (1995). 'Glycosylation inhibitors in biology and medicine.' Curr Opin Struct Biol 5(5): 605-611. Jensen, P. H., N. G. Karlsson, D. Kolarich and N. H. Packer (2012). 'Structural analysis of N- and O-glycans released from glycoproteins.' Nat Protoc 7(7): 1299-1310. Jia, L., J. Zhang, T. Ma, Y. Guo, Y. Yu and J. Cui (2018). 'The Function of Fucosylation in Progression of Lung Cancer.' Front Oncol 8: 565. Kang, M. S. and A. D. Elbein (1983). 'Alterations in the structure of the oligosaccharide of vesicular stomatitis virus G protein by swainsonine.' J Virol 46(1): 60-69. Kawashima, H., S. Sueyoshi, H. Li, K. Yamamoto and T. Osawa (1990). 'Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins.' Glycoconj J 7(4): 323-334. Kim, B., R. Sun, W. Oh, A. M. J. Kim, J. R. Schwarz and S. O. Lim (2020). 'Saccharide analog, 2-deoxy-d-glucose enhances 4-1BB-mediated antitumor immunity via PD-L1 deglycosylation.' Mol Carcinog. Kowalczyk, T., M. Ciborowski, J. Kisluk, A. Kretowski and C. Barbas (2020). 'Mass spectrometry based proteomics and metabolomics in personalized oncology.' Biochim Biophys Acta Mol Basis Dis 1866(5): 165690. Kuan, S. F., J. C. Byrd, C. Basbaum and Y. S. Kim (1989). 'Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells.' J Biol Chem 264(32): 19271-19277. Kudelka, M. R., A. Antonopoulos, Y. Wang, D. M. Duong, X. Song, N. T. Seyfried, A. Dell, S. M. Haslam, R. D. Cummings and T. Ju (2016). 'Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells.' Nat Methods 13(1): 81-86. Lee, N. P., C. M. Chan, L. N. Tung, H. K. Wang and S. Law (2018). 'Tumor xenograft animal models for esophageal squamous cell carcinoma.' J Biomed Sci 25(1): 66. Lin, C. H., Y. Y. Fan, Y. Y. Chen, S. H. Wang, C. I. Chen, L. C. Yu and K. H. Khoo (2009). 'Enhanced expression of beta 3-galactosyltransferase 5 activity is sufficient to induce in vivo synthesis of extended type 1 chains on lactosylceramides of selected human colonic carcinoma cell lines.' Glycobiology 19(4): 418-427. Madjd, Z., T. Parsons, N. F. Watson, I. Spendlove, I. Ellis and L. G. Durrant (2005). 'High expression of Lewis y/b antigens is associated with decreased survival in lymph node negative breast carcinomas.' Breast Cancer Res 7(5): R780-787. Mereiter, S., M. Balmana, J. Gomes, A. Magalhaes and C. A. Reis (2016). 'Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer.' Front Oncol 6: 55. Morelle, W. and J. C. Michalski (2007). 'Analysis of protein glycosylation by mass spectrometry.' Nat Protoc 2(7): 1585-1602. Naka, R., S. Kamoda, A. Ishizuka, M. Kinoshita and K. Kakehi (2006). 'Analysis of total N-glycans in cell membrane fractions of cancer cells using a combination of serotonin affinity chromatography and normal phase chromatography.' J Proteome Res 5(1): 88-97. Nakayama, H., M. Nagafuku, A. Suzuki, K. Iwabuchi and J. I. Inokuchi (2018). 'The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems.' FEBS Lett 592(23): 3921-3942. Ojima, T., E. Shibata, S. Saito, M. Toyoda, H. Nakajima, M. Yamazaki-Inoue, Y. Miyagawa, N. Kiyokawa, J. I. Fujimoto, T. Sato and A. Umezawa (2015). 'Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells.' Sci Rep 5: 14988. Orlando, R. (2010). 'Quantitative glycomics.' Methods Mol Biol 600: 31-49. Parodi, A., R. D. Cummings and M. Aebi (2015). Glycans in Glycoprotein Quality Control. Essentials of Glycobiology. rd, A. Varki, R. D. Cummings et al. Cold Spring Harbor (NY): 503-511. Parry, S., V. Ledger, B. Tissot, S. M. Haslam, J. Scott, H. R. Morris and A. Dell (2007). 'Integrated mass spectrometric strategy for characterizing the glycans from glycosphingolipids and glycoproteins: direct identification of sialyl Le(x) in mice.' Glycobiology 17(6): 646-654. Parsons, J. and C. Francavilla (2020). '‘Omics Approaches to Explore the Breast Cancer Landscape.' Frontiers in Cell and Developmental Biology 7(395). Paszkiewicz-Gadek, A., H. Porowska, D. Lemancewicz, S. Wolczynski and A. Gindzienski (2006). 'The influence of N- and O-glycosylation inhibitors on the glycosylation profile of cellular membrane proteins and adhesive properties of carcinoma cell lines.' Int J Mol Med 17(4): 669-674. Peng, W., J. Zhao, X. Dong, A. Banazadeh, Y. Huang, A. Hussien and Y. Mechref (2018). 'Clinical application of quantitative glycomics.' Expert Rev Proteomics 15(12): 1007-1031. Rho, J. M., L. R. Shao and C. E. Stafstrom (2019). '2-Deoxyglucose and Beta-Hydroxybutyrate: Metabolic Agents for Seizure Control.' Front Cell Neurosci 13: 172. Russo, D., L. Capolupo, J. S. Loomba, L. Sticco and G. D'Angelo (2018). 'Glycosphingolipid metabolism in cell fate specification.' J Cell Sci 131(24). Sadeh, S., C. D. Warren, P. F. Daniel, B. Bugge, L. F. James and R. W. Jeanloz (1983). 'Characterization of oligosaccharides from the urine of loco-intoxicated sheep.' FEBS Lett 163(1): 104-109. Sasawatari, S., Y. Okamoto, A. Kumanogoh and T. Toyofuku (2020). 'Blockade of N-Glycosylation Promotes Antitumor Immune Response of T Cells.' J Immunol. Scott, D. A., R. Casadonte, B. Cardinali, L. Spruill, A. S. Mehta, F. Carli, N. Simone, M. Kriegsmann, L. Del Mastro, J. Kriegsmann and R. R. Drake (2019). 'Increases in Tumor N-Glycan Polylactosamines Associated with Advanced HER2-Positive and Triple-Negative Breast Cancer Tissues.' Proteomics Clin Appl 13(1): e1800014. Shao, B., C. W. Li, S. O. Lim, L. Sun, Y. J. Lai, J. Hou, C. Liu, C. W. Chang, Y. Qiu, J. M. Hsu, L. C. Chan, Z. Zha, H. Li and M. C. Hung (2018). 'Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer.' Am J Cancer Res 8(9): 1837-1846. Shen, L., X. Dong, M. Yu, Z. Luo and S. Wu (2017). 'beta3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147.' J Cancer 8(2): 314-322. Shubhakar, A., P. C. Pang, D. L. Fernandes, A. Dell, D. I. R. Spencer and S. M. Haslam (2018). 'Towards automation of glycomic profiling of complex biological materials.' Glycoconj J 35(3): 311-321. Smith, D. F. and P. A. Prieto (2001). 'Special considerations for glycolipids and their purification.' Curr Protoc Mol Biol Chapter 17: Unit17 13. Trinchera, M., A. Aronica and F. Dall’Olio (2017). 'Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers.' Biology 6(1): 16. Tulsiani, D. R., T. M. Harris and O. Touster (1982). 'Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II.' J Biol Chem 257(14): 7936-7939. Veillon, L., C. Fakih, H. Abou-El-Hassan, F. Kobeissy and Y. Mechref (2018). 'Glycosylation Changes in Brain Cancer.' ACS Chem Neurosci 9(1): 51-72. Veillon, L., Y. Huang, W. Peng, X. Dong, B. G. Cho and Y. Mechref (2017). 'Characterization of isomeric glycan structures by LC-MS/MS.' Electrophoresis 38(17): 2100-2114. Venkitachalam, S. and K. Guda (2017). 'Altered glycosyltransferases in colorectal cancer.' Expert Rev Gastroenterol Hepatol 11(1): 5-7. Verostek, M. F., C. Lubowski and R. B. Trimble (2000). 'Selective Organic Precipitation/Extraction of Released N-Glycans Following Large-Scale Enzymatic Deglycosylation of Glycoproteins.' Analytical Biochemistry 278(2): 111-122. Wu, A. M. and J. H. Liu (2019). 'Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses.' Glycoconj J 36(2): 175-183. Yagel, S., R. Feinmesser, C. Waghorne, P. K. Lala, M. L. Breitman and J. W. Dennis (1989). 'Evidence that beta 1-6 branched Asn-linked oligosaccharides on metastatic tumor cells facilitate invasion of basement membranes.' Int J Cancer 44(4): 685-690. Yamada, K., M. Kinoshita, T. Hayakawa, S. Nakaya and K. Kakehi (2009). 'Comparative Studies on the Structural Features of O-Glycans between Leukemia and Epithelial Cell Lines.' Journal of Proteome Research 8(2): 521-537. Yamada, K., Y. Mitsui, N. Kakoi, M. Kinoshita, T. Hayakawa and K. Kakehi (2012). 'One-pot characterization of cancer cells by the analysis of mucin-type glycans and glycosaminoglycans.' Anal Biochem 421(2): 595-606. Yang, S., N. Hoti, W. Yang, Y. Liu, L. Chen, S. Li and H. Zhang (2017). 'Simultaneous analyses of N-linked and O-linked glycans of ovarian cancer cells using solid-phase chemoenzymatic method.' Clin Proteomics 14: 3. Yang, S., Y. Hu, L. Sokoll and H. Zhang (2017). 'Simultaneous quantification of N- and O-glycans using a solid-phase method.' Nat Protoc 12(6): 1229-1244. Yousefi, S., E. Higgins, Z. Daoling, A. Pollex-Kruger, O. Hindsgaul and J. W. Dennis (1991). 'Increased UDP-GlcNAc:Gal beta 1-3GaLNAc-R (GlcNAc to GaLNAc) beta-1, 6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis.' J Biol Chem 266(3): 1772-1782. Zhang, D., J. Li, F. Wang, J. Hu, S. Wang and Y. Sun (2014). '2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy.' Cancer Lett 355(2): 176-183. Zhou, S., Y. Hu, J. L. DeSantos-Garcia and Y. Mechref (2015). 'Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS.' J Am Soc Mass Spectrom 26(4): 596-603. Zhou, S., L. Veillon, X. Dong, Y. Huang and Y. Mechref (2017). 'Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans.' Analyst 142(23): 4446-4455. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77001 | - |
| dc.description.abstract | 細胞的醣質體包含醣脂質或醣蛋白的N型及O型醣鍊,雖其基礎結構有所不同,但在延伸的醣鍊末端,均可發現藉由唾液酸、岩藻糖、或硫酸機團等修飾而形成的末端結構-醣表位(glycotope)。這些末端醣表位藉由與特定蛋白受體的結合,參與並調控細胞與細胞、或細胞與外界的辨識、溝通、與黏附等生理現象,足以代表一個生物樣本(如細胞或組織)在特定的生理或病理狀態下的醣質體特色。傳統的醣質分析法著重於將醣蛋白的N型及O型醣鍊與醣脂質各自純化分離後獨立分析,其繁複的萃取及分離步驟,不僅降低了分析效率,以末端醣表位的角度而言,亦未能達到整體性的全面鑑定。
本研究所-開發的「單管式醣質分析法」,藉由省略傳統醣質分析的中間分離步驟,創新地將醣蛋白的N型與O型醣鍊製備成單管分析樣品,達成同時偵測N型及O型糖鍊的目標。質譜分析顯示,單管式製備的N/O型醣鍊混和物展現了與使用傳統法分離的N型及O型醣鍊的高度同質性,並無因單管式製備而遺漏了醣蛋白的特定醣類資訊,且單管式的同時性分析精準地呈現了醣質體樣品中N型及O型糖鍊的相對含量資訊,這是傳統分析法不易達成的。結合本研究團隊所開發的新穎醣質體末端表位液相層析串聯質譜分析平台與數據分析軟體,單管式醣質分析法精確且有效率地鑑定了胃癌及大腸結腸癌細胞中一系列被認為與癌症相關帶有唾液酸及岩藻糖修飾的Lewis血型末端醣表位結構。不僅如此,基於醣質體製備過程中醣脂質會與醣蛋白共沉澱的意外發現,本研究進一步成功地將醣脂質與醣蛋白分析結合,無論是製備同時含有醣脂質醣鍊、N型與O型醣鍊的單管式分析,或是由此法衍生的簡易醣脂質萃取與分析,均拓展了單管式醣質分析法的應用範圍。 應用方面,本研究以所開發的單管式醣質分析法有效解析I.異體移植之腫瘤與II.醣合成抑制劑處理後的細胞醣質體變化。在第一部份,與一般離體培養的癌症細胞相比,由胃癌及大腸結腸癌的異體移植腫瘤分離出的細胞,展現了各具特色的末端醣表位的變化,包含Lewis b/y或聚乳醣胺(poly-N-acetyllactosamine)的上升或下降。在醣合成抑制劑方面,本研究發現兩類N型醣鍊抑制劑swainsonine和2-deoxyglucose並非如預期單純抑制胃癌細胞 N型醣鍊的產生,尚會導誘生成新奇的醣類結構,包括具有聚乳醣胺延伸與多岩藻糖修飾的混和型 (hybrid type) N型醣鍊及攝入了脫氧六碳糖的多甘露醣型 (high mannose type) N型醣鍊。另外,本研究亦發現在細胞株培養中添加廣為人知的O型醣鍊抑制劑benzyl-α-GalNAc後,不單是造成特定O型醣鍊的減少,而是對醣蛋白整體、包含N型醣鏈上唾液酸化與岩藻糖化的系統性抑制,使細胞不正常地堆積未經修飾的N型與O型醣鏈。這些預料之外的醣質體改變多方驗證了我們需要一個全面且精準的醣質分析平台來有效率地鑑定細胞處於不同生物環境下醣質體的動態變化,也突顯了本論文提出的「單管式醣質分析法」之高度適用性與應用價值。 基於其高效化的設計,單管式醣質分析法能簡化醣質體的製備流程,亦縮短分析所需的時間,而提升了醣質分析的效率且維持傳統分析所能達成的分析深度及廣度。本研究僅以分析單管樣品,同時且全面地解析了醣脂質、N型及O型糖鍊,提供一個新穎的整體視角來研究細胞的醣質體。藉由與醣質體末端表位分析平台的整合,單管式醣質分析法具有高度潛力發展為高通量的醣質體分析技術,藉此能夠處理大量的臨床樣品。單管式醣質體末端表位鑑定分析平台藉由有效發掘隱藏在醣質體末端的訊息,預示了「精準醣質體學」在個人化醫療上的無限發展。 | zh_TW |
| dc.description.abstract | As a unique type of biomarker, the sugar codes represented by an assorted terminal sialyl-, fucosyl, and/or sulfated glyco-epitopes (glycotopes) collectively define the glycomic features of a cell or tissue type at a specific patho-physiological state and commonly act as essential players of glycan-mediated functions in a myriad of biological processes. Since the same glycotopes can be equally or differentially distributed over glycoproteins and glycosphingolipids (GSLs), a holistic view of their regulated expression necessitates a comprehensive profiling of N-, O-, and GSL-glycans. However, the conventional separate analysis of different glycan types that requires multiple extraction/fractionation steps often compromise the analytical throughputs of MS-based glycomic studies and appears redundant in a pursuit of mapping the glycotopes shared among glycoconjugates.
One-fraction glycan analysis was developed in this study as an innovative glycomic approach featuring a sequential release into one single vial and the simultaneous detection of N-glycans and O-glycans by means of eliminating the intermediate fractionation steps that partition a glycan mixture to separate pools in regular MS-based glycomics. Analysis of the non-fractionated N- and O-glycans via MALDI-MS and nanoLC-ESI-MS exhibited a qualitatively unbiased representation and cell-specific characteristic portrayal of protein glycosylation. By interfacing with a glycotope-centric glycomic pipeline based on an Orbitrap MS-based RP C18 nanoLC-MS2-pd-MS3 analysis of permethylated glycans followed by GlyPick-aided data mining for sequence-informative MS2 oxonium ions and the linkage-specific MS3 ions from selected MS2 productive ions, the one-fraction glycan analysis was proven to a reliable semi-quantitative analytical strategy for a precision mapping of the (sialyl-) fucoyslated Lewis antigens comprising (Sialyl) Lewis a/x, Lewis b/y, and H type 1/2 in gastric and colorectal cancer cells. Furthermore, empowered by the unexpected co-extraction of GSLs with proteins upon protein precipitation, the protein-based one-fraction glycan analysis was extended to a GSL-included global glycomic characterization realized through either a direct one-fraction N-, O-, and GSL glycan analysis or a facile recovery of intact GSLs for parallel analysis. Next, the applications of one-fraction glycan analysis to tumor xenografts and glycosylation inhibitor treated cancer cells validated its capability to precisely delineate the glycomic alterations of cancer cells when exposed to characteristic cellular and biochemical factors. Comparing to the typical ex vivo cultured counterparts, the tumor-resident cancer cells isolated from gastric and colorectal tumor xenografts exhibited cell-dependent variable glycomic changes in multiple biologically relevant glycotopes including Lewis b/y and polylactosamine. On the other hand, two N-glycan inhibitors, swainsonine and 2-deoxyglucose, rather than acting as classical blockers of N-glycosylation, actively participated in N-glycan assembly in gastric cancer cells and brought about unusual N-glycans as the complex type-like hybrid type N-glycans with multi-fucosylated ploylactosamines, and the deoxyhexose-incorporated high mannose type N-glycans, respectively. Moreover, the common O-glycan inhibitor benzyl-α-GalNAc was demonstrated to strikingly modulate N-glycans by downregulating the terminal sialylation and fucosylation, leading to aberrant accumulation of unmodified multi-antennary N-glycans and simple core 1/2 O-glycans in multiple cell lines. The serendipitous discovery of glycomic alterations attested to the necessity of a glycome-wide analytical approach like one-fraction glycan analysis to dissect the dynamic cellular glycosylation in different biological contexts. Based on the streamlined design, one-fraction glycan analysis would increase analytical throughput via a simplified sample preparation and a shortened data acquisition time without compromising the attainable glycomic resolution and precision. Moreover, the unprecedented simultaneous one-shot analysis of one-fraction N-, O-, and GSL-glycans could directly unravel the relative abundance of glycans distributed over glycoproteins and glycosphingolipids, conferring a global perspective on cellular glycomes. Through integrating with the semi-quantitative glycotope mapping pipeline, the present one-fraction glycan analysis could be further evolved to an advanced high-throughput glycomic platform suited for efficiently mapping the glycotopes of biological significance and with capability to manage huge cohorts of clinical samples, priming the precision glycomics for a promise of optimized personalized medicine. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:58Z (GMT). No. of bitstreams: 1 U0001-2707202021361500.pdf: 25705992 bytes, checksum: 876104b25750f73a9a90333297b5c9e5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II ABSTRACT IV TABLE OF CONTENTS 1 LIST OF FIGURES 4 LIST OF TABLES 7 ABBREVIATION 8 CHAPTER 1. INTRODUCTION 10 1.1 Glycosylation and Glycotope 10 1.1.1 Mammalian protein glycosylation 10 1.1.2 Lewis antigens in cancer: a glycotope-centric functional perspective of glycosylation 13 1.2 Analytical Strategy of Glycomics 16 1.2.1 Mass spectrometry-based glycomics 16 1.2.2 Decoding terminal messages via glycotope-centric glycomics 19 1.3 Advancing Glycomics by a Novel Strategy with Simple Sample Preparation 24 1.3.1 The rational design of one-fraction glycan analysis for glycoproteins 24 1.3.2 Novel participation of glycosphingolipids in one-fraction glycan analysis 27 1.4 Specific Aims and Achievement 29 CHAPTER 2. MATERIALS AND METHOD 31 2.1 Reagents 31 2.2 Cell Lines and Animals 31 2.3 Cell Culture 31 2.3.1 Regular 2D cell culture 31 2.3.2 Treatment of glycosylation inhibitors 32 2.3.3 Isolation of xAGS and xCOLO 201 cells from mouse tumor xenografts 32 2.4 Preparation of N-glycan, O-glycans, and GSL glycans 33 2.4.1 Conventional method 33 2.4.2 One-fraction Method 34 2.5 Enzymatic Digestion and Chemical Derivatization of Glycans 35 2.5.1 α1-2,3,6 Mannosidase treatment 35 2.5.2 Reduction 35 2.5.3 Permethylation 35 2.6 Mass Spectrometry 36 2.6.1 MALDI-MS and MS/MS 36 2.6.2 NanoLC-ESI-MS/MS 37 2.6.3 Glycomic data processing 37 2.7 Immuno- and Lectin Staining 38 2.7.1 Flow Cytometry 38 2.7.2 Western and Lectin Blot 38 CHAPTER 3. RESULTS 40 3.1 Establishment of One-fraction N/O-glycan Analysis for Building a Streamlined Glycotope-centric Glycomic Workflow 40 3.1.1 Characterization of one-fraction N/O-glycans through MALDI-MS analysis 40 3.1.2 RP nanoLC separation of one-fraction N/O-glycans 49 3.1.3 NanoLC-MS2/MS3 based glycotope mapping of one-fraction N/O-glycans 54 3.2 Glycomic Profiling of Cancer Cells of Tumor Xenograft with One-fraction Glycan Analysis 61 3.2.1 Tumor xenograft model of COLO 201 62 3.2.2 Tumor xenograft model of AGS 66 3.3 Delineating Glycomic Alteration Directed by Glycosylation Inhibitors by One-fraction Glycan Analysis 74 3.3.1 N-glycosylation inhibitors 76 3.3.1.1 Swainsonine 76 3.3.1.2 2-Deoxyglucose 79 3.3.2 O-glycosylation inhibitor: Benzyl-α-GalNAc 85 3.4 Development of a GSL-included Global One-fraction Glycan Analysis 96 3.4.1 Establishment of a GSL-included one-fraction glycan analysis on SW1116 and AGS 96 3.4.2 Glycotope mapping of one-fraction N/O/GSL-glycans via RP C18 nanoLC-MS2/MS3 analysis 102 3.4.3 Glycosphingolipid recovery from the one-fraction N/O-glycan preparation workflow 107 CHAPTER 4. DISCUSSION 114 4.1 Advantage, Limitation, and Significance of One-fraction Glycan Analysis 114 4.1.1 More than a one fraction – the analytical synergy with glycotope-centric glycomics 114 4.1.2 A high-fidelity holistic portrait of glycotopes collectively adorning the cellular glycoproteome 116 4.1.3 Crossing the border between glycoconjugates – Practical considerations for GSL-included one-fraction glycan analysis 118 4.2 Unveiling the Dynamic Cellular Glycomes by One-fraction Glycan Analysis 120 4.2.1 Persistent micro-evolution of cancer glycosylation in tumor microenvironment 120 4.2.2 Nothing never changes – A lesson from glycomic profiling of glycosylation inhibitor treated cells 122 4.3 Promise and Challenge of One-fraction Glycan Analysis 126 4.3.1 An odyssey to accurate quantitative glycomics 126 4.3.2 Promise as a high-content multiplex analysis for precision glycomics 128 CHAPTER 5. CONCLUSION AND FUTURE PERSPECTIVES 130 CHAPTER 6. REFERENCE 132 | |
| dc.language.iso | en | |
| dc.subject | 醣質體末端表位分析平台 | zh_TW |
| dc.subject | 單管式醣質分析法 | zh_TW |
| dc.subject | 精準醣質體學 | zh_TW |
| dc.subject | 質譜分析法 | zh_TW |
| dc.subject | 醣質體變化 | zh_TW |
| dc.subject | Glycomic alteration | en |
| dc.subject | One-fraction glycan analysis | en |
| dc.subject | Glycotope mapping | en |
| dc.subject | Precision glycomics | en |
| dc.subject | Mass spectrometry | en |
| dc.title | 高效能單管式醣質體末端表位鑑定分析平台之開發與應用 | zh_TW |
| dc.title | Development and Applications of an Efficient One-fraction Glycan Analysis Workflow for Glycome-wide Glycotope Mapping | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 安形高志(Takashi Angata),徐尚德(Shang-Te Danny Hsu),王亦生(Yi Sheng Wang),沈家寧(Chia-Ning Shen),徐翠玲(Tsui-Ling Hsu) | |
| dc.subject.keyword | 單管式醣質分析法,醣質體末端表位分析平台,精準醣質體學,質譜分析法,醣質體變化, | zh_TW |
| dc.subject.keyword | One-fraction glycan analysis,Glycotope mapping,Precision glycomics,Mass spectrometry,Glycomic alteration, | en |
| dc.relation.page | 141 | |
| dc.identifier.doi | 10.6342/NTU202001936 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202021361500.pdf 未授權公開取用 | 25.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
