請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77000完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛紹綱(Shau-Gang Mao) | |
| dc.contributor.author | Ting-Wei Wu | en |
| dc.contributor.author | 吳庭瑋 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:56Z | - |
| dc.date.available | 2021-07-10T21:42:56Z | - |
| dc.date.copyright | 2020-08-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | [1] J. C. Jackson, R. Summan, G. I. Dobie, S. M. Whiteley, S. G. Pierce and G. Hayward, 'Time-of-flight measurement techniques for airborne ultrasonic ranging,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Feb. 2013. [2] J. Marcum, “A statistical theory of target detection by pulsed radar,” IRE Transactions on Information Theory, Apr. 1960. [3] L. Korba, S. Elgazzar and T. Welch, 'Active infrared sensors for mobile robots,' IEEE Transactions on Instrumentation and Measurement, Apr. 1994. [4] K. Oguchia, S. Maruta and D. Hanawa, 'Human positioning estimation method using received signal strength indicator (RSSI) in a wireless sensor network,' in The 9th International Conference on Future Networks and Communications, 2014. [5] M. Pichler, S. Schwarzer, A. Stelzer and M. Vossiek, 'Multi-channel distance measurement with IEEE 802.15.4 (ZigBee) devices,' IEEE Journal of Selected Topics in Signal Processing, Oct. 2009. [6] C. Feng, W. S. A. Au, S. Valaee and Z. Tan, 'Received-signal-strength-based indoor positioning using compressive sensing,' IEEE Transactions on Mobile Computing, Vol.11, no.12, Dec. 2012. [7] I.Bisio, M.Cerruti and F.Lavagetto, 'A trainingless WiFi fingerprint positioning approach over mobile devices,' IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 832-835, Apr. 2014. [8] R. Faragher and R. Harle, 'Location fingerprinting with bluetooth low energy beacons,' IEEE Journal on Selected Areas in Communications. ,vol. 33 , no. 11, Nov. 2015. [9] Z. Zheng, L. Liu, C. Zhao and W. Hu, 'High accuracy indoor positioning scheme using single LED and camera,' Electronics Letters. ,Vol. 54 , no. 4, Feb. 2018. [10] Y. Xu, Y. S. Shmaliy and C. K. Ahn, 'Robust and accurate UWB-based indoor robot localization using integrated EKF/EFIR filtering,' IET Radar, Sonar Navigation, vol. 12, no. 7, pp. 750-756, Jun. 2018. [11] S. He and S.-H. G. Chan, 'Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons,' IEEE Communications Surveys Tutorials., Vol. 18, no. 1, 2016. [12] Y. Zhuo, H. Zhu, H. Xue and S. Chang, 'Perceiving accurate CSI phases with commodity WiFi devices,' IEEE INFOCOM, 2017. [13] M. Kotaru, K. Joshi, D. Bharadia and S. Katti, 'SpotFi: decimeter level localization using WiFi,' in SIGCOMM, 2015. [14] M. Collotta, G. Pau, T. Talty and O. Tonguz, 'Bluetooth 5: A concrete step forward toward the IoT,' IEEE Commun. Mag., vol. 56, pp. 125-131, 2018. [15] B. SIG, 'Bluetooth core specification v5.1,' 2019. [Online]. Available: https://www.bluetooth. com/specifications/bluetooth-core-specification. [16] B. SIG, 'Enhancing bluetooth location services with direction finding., 2019 [Online]. Available: https://www.bluetooth.com/bluetooth-resources/enhancing-bluetooth-location-services-with-direction-finding,' 2019. [Online]. Available: https://www.bluetooth.com/bluetooth-resources/enhancing-bluetooth-location-services-with-direction-finding. [17] R. Suksawang and W. Suwansantisuk, 'Performance of RSS-based localization in unknown environments,' IEEE 14th International Colloquium on Signal Processing Its Applications, Mar. 2018. [18] F. Wen and C. Liang, 'An indoor AOA estimation algorithm for IEEE 802.11ac Wi-Fi signal using single Access Point,' IEEE Communications Letters, vol. 18, no. 12, pp. 2197-2200, Oct. 2014. [19] Q. Xue and J. Li, 'The minimum error algorithm based on TOA measurement for achieving approximate optimal 3D positioning accuracy,' in 14th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2017. [20] T. T. T. N. e. al, 'High-accuracy positioning system based on ToA for industrial wireless LAN,' in NAFOSTED Conference on Information and Computer Science, 2017. [21] N. Vankayalapati, S. Kay and Q. Ding, 'TDOA based direct positioning maximum likelihood estimator and the cramer-rao bound,' IEEE Transactions on Aerospace and Electronic Systems., Vol. 50, no. 3, Jul. 2014. [22] V. Djaja-Josko, J. Kolakowski and J. Modelski, 'TDOA estimation using a pair of synchronized DW1000 based anchor nodes,' in 22nd International Microwave and Radar Conference, Poznan, Poland, 2018. [23] S. Aditya, A. F. Molisch and H. M. Behairy, 'A survey on the impact of multipath on wideband Time-of-arrival-based localization,' Proceedings of the IEEE, vol. pp, no. 99, pp. 1-21, May 2018. [24] A. R. J. Ruiz and F. S. Granja, 'Comparing Ubisense, BeSpoon, and DecaWave UWB location systems: indoor performance analysis,' IEEE Transactions on Instrumentation and Measurement., vol. 66, no. 8, Aug. 2017. [25] M. R. Mahfouz, A. E. Fathy, M. J. Kuhn and Y. Wang, 'Recent trends and advances in UWB positioning,' IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, 2009. [26] V. M. e. al., “Local positioning system using UWB range measurements for an unmanned blimp,” IEEE Robotics and Automation Letters. vol. 3, no. 4, Oct. 2018. [27] M. Strohmeier, T. Walter, J. Rothe and S. Montenegro, 'Ultra-wideband based pose estimation for small unmanned aerial vehicles,' IEEE Access., vol. 6, Oct. 2018. [28] T. F. e. al., “A human-tracking robot using ultra wideband technology,” IEEE Access., vol. 6, Jul. 2018. [29] Decawave, 'APS003 application note real time location systems,' 2014. [Online]. Available: https://www.decawave.com/wp-content/uploads/2018/10/APS003_DW1000-RTLS-Introduction_v1.1.pdf. [30] Decawave, 'DW1000 datasheet,' 2017. [Online]. Available: https://www.decawave.com/wp-content/uploads/2020/04/DW1000_Datasheet.pdf. [31] STMicroelectronics, 'stm32f411ce datasheet,' 2017. [Online]. Available: https://www.st.com/resource/en/datasheet/stm32f411ce.pdf. [32] Decawave, 'APS013 application note the implementation of two-way ranging with the DW1000,' 2015. [Online]. Available: https://www.decawave.com/wp-content/uploads/2018/10/APS013_The-Implementation-of-Two-Way-Ranging-with-the-DW1000_v2.3.pdf. [33] Decawave, 'APS011 application note sources of error in DW1000 based Two-Way Ranging (TWR) schemes,' 2014. [Online]. Available: https://www.decawave.com/sites/default/files/aps011_sources_of_error_in_twr.pdf. [34] Y. Jiang and V. C. Leung, 'An asymmetric double sided two-way ranging for crystal offset,' in International Symposium on Signals, Systems and Electronics, 2007. [35] 姚宗緯, “電磁波於目標偵蒐與定位之應用,” 2018. [36] 成大資工Wiki, 'Universal asynchronous receiver/transmitter,' 2015. [Online]. Available: http://wiki.csie.ncku.edu.tw/embedded/USART#asynchronous-%E9%9D%9E%E5%90%8C%E6%AD%A5%E5%82%B3%E8%BC%B8. [37] 成大資工Wiki, 'I2C: Inter-integrated circuit,' 2016. [Online]. Available: http://wiki.csie.ncku.edu.tw/embedded/I2C. [38] 成大資工Wiki, 'SPI,' 2015. [Online]. Available: http://wiki.csie.ncku.edu.tw/embedded/SPI. [39] “MQTT,” [線上]. Available: https://mqtt.org/. [40] P.Baldi, “Gradient descent learning algorithm overview: A general dynamical systems perspective,” IEEE Trans. Neural Networks, 1995. [41] 'Optimization method -- gradient descent adaGrad,' [Online]. Available: http://cpmarkchang.logdown.com/posts/275500-optimization-method-adagrad. [42] Y. Weng, W. Xiao and L. Xie, 'Total least squares method for robust source localization in sensor networks using TDOA measurements,' International Journal of Distributed Sensor Networks, Aug. 2011. [43] L. Kovavisaruch and K. C. Ho, 'Modified Taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions,' IEEE International Symposium on Circuits and Systems,, 2005. [44] Y. T. Chan and K. C. Ho, 'A simple and efficient estimator for hyperbolic location,' IEEE Transactions on Signal Processing, 1994. [45] K. Man, K. Tang and S. Kwong, 'Genetic algorithms: concepts and applications,' IEEE Trans. Industrial Electronics, vol.43, pp. 519-534, 1996. [46] K. S. Tang, K. F. Man, S. Kwong and Q. He, 'Genetic algorithms and their applications,' IEEE Signal Processing Magazine, vol. 13, pp. 22-37, 1996. [47] 久德電子, '固定式-氣體偵測器/氣體探測器,' [Online]. Available: http://www.jetec.com.tw/chinese/product1-1_KGDSI100.html. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77000 | - |
| dc.description.abstract | 本論文藉由超寬頻(Ultra-WideBand ; UWB)訊號時間精準度特性,分別提出了不需要部署基站的即時測距系統和四基站多目標定位系統,即時測距系統使用優化的雙向測距法(Two-way Ranging),修正訊息衝突所造成的測距錯誤,可以同時偵測20個裝置的距離,並且保持超過90%的準確率;多目標定位系統基於一對多雙邊測距法達到基站間無線同步的效果,讓待定位目標接收時間差(Time Difference of Arrival; TDOA)資訊,系統會根據待定位目標數量動態調整定位週期,讓每個定位目標有效率地錯開回傳時間,再經由梯度下降法(Gradient Descent)計算出座標位置,經過模擬與比較驗證梯度下降法確實優於其他常見定位方法,在直視(Line of Sight;LOS)的環境下本系統精準度可達10公分,在干擾嚴重的環境中為了減少非直視造成的測距誤差,則使用基因演算法(Genetic Algorithm;GA)找到能讓定位誤差最低的基站擺放方式,並實際驗證定位誤差與任意擺放相比下降了20公分。最後提出適合應用本論文系統之應用場景,利用本系統即時及高精準的特性,達到安全及智慧化的效果。 | zh_TW |
| dc.description.abstract | This thesis, based on the high time accuracy of the ultra-wideband (UWB) signal, proposes a real-time ranging system that does not require the deployment of base stations and a multi-target positioning system requiring four base stations. The real-time ranging system uses the optimized two-way ranging (TWR) to modify the ranging error due to signal conflict, and can detect the distance of 20 devices at the same time, and maintains the accuracy more than 90%. The multi-target positioning system achieves wireless synchronization among base stations based on one-to-many two-way range, and the targets receive time difference of arrival. The system would adjust the cycle dynamically to make targets return messages efficiently, and calculate the coordinate positions by gradient descent which is better than other positioning algorithm. The root-mean-square error is less than 10 cm in the line of sight (LOS) environment, and the genetic algorithm is applied in the environment with severe interference to find the base station placement method that can minimize the positioning error. The positioning error is reduced by 20 cm compared with other placements. The suitable scenarios are proposed at the end of this thesis, and our system could make the users safer and more intelligent. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:56Z (GMT). No. of bitstreams: 1 U0001-2807202010501500.pdf: 4767547 bytes, checksum: c731c30639bedc84550228b339479881 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 概論 1 1.2 研究動機與目的 1 1.2.1 距離偵測警示系統 1 1.2.2 多目標定位系統 3 1.3 章節介紹 7 第2章 UWB超寬頻測距系統 8 2.1 UWB超寬頻定位系統硬體介紹 8 2.1.1 Decawave DW1000介紹 9 2.1.2 STM32F411CE微控制器 13 2.1.3 DW1000與STM32F411CE整合電路 14 2.2 TWR測距及定位法 15 2.2.1 TWR定位原理 15 2.2.2 一對一TWR測距法 15 2.2.3 一對多TWR測距法 17 2.3 TDOA定位法 19 2.3.1 TDOA定位原理 19 2.3.2 時鐘頻率比值 20 2.3.3 基於TWR之TDOA無線同步 21 第3章 距離偵測警示系統 24 3.1 距離偵測警示系統架構 24 3.1.1 距離偵測警示系統架構圖 24 3.1.2 通訊協定UART、I2C與SPI 25 3.2 優化雙向測距法 28 3.2.1 優化雙向測距法原理 28 3.2.2 訊息衝突之修正 29 3.3 實驗結果 31 第4章 多目標定位系統 35 4.1 多目標定位系統架構 35 4.1.1 多目標定位系統架構圖 35 4.1.2 動態分配回傳時間 36 4.1.3 通訊協定MQTT 42 4.2 梯度下降優化法 45 4.2.1 直角座標梯度下降法 46 4.2.2 常見定位法 47 4.2.3 模擬與實驗結果 48 4.3 最佳化定位基站建置 51 4.3.1 基因演算法 51 4.3.2 基於基因演算法之最佳定位基站建置 52 4.3.3 模擬結果 55 4.4 實驗結果 57 第5章 總結與未來展望 61 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 超寬頻 | zh_TW |
| dc.subject | 到達時間差法 | zh_TW |
| dc.subject | 雙向測距法 | zh_TW |
| dc.subject | 梯度下降法 | zh_TW |
| dc.subject | time difference of arrival (TDOA) | en |
| dc.subject | ultra-wideband | en |
| dc.subject | genetic algorithm | en |
| dc.subject | gradient descent | en |
| dc.subject | two-way range | en |
| dc.title | 超寬頻測距及定位系統之設計 | zh_TW |
| dc.title | Design of Ultra-wideband Ranging and Positioning System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡維庭(Wei-Ting Tsai),劉重儀(Chong-Yi Liou),游玉堂 | |
| dc.subject.keyword | 超寬頻,到達時間差法,雙向測距法,梯度下降法,基因演算法, | zh_TW |
| dc.subject.keyword | ultra-wideband,time difference of arrival (TDOA),two-way range,gradient descent,genetic algorithm, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202001950 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202010501500.pdf 未授權公開取用 | 4.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
