Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳怡然(Yi-Jan Emery Chen)
dc.contributor.authorYi-Ting Linen
dc.contributor.author林奕廷zh_TW
dc.date.accessioned2021-07-10T21:42:39Z-
dc.date.available2021-07-10T21:42:39Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citationB. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
B. Razavi, RF Microelectronics, Pearson, 2012.
R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, John Wiley Sons, 2005.
R. B. Staszewski and P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS, New York : Wiley, 2006.
劉深淵,楊清淵,“鎖相迴路”,滄海書局,2006。
R. B. Staszewski, C.-M. Hung, N. Barton, M.-C. Lee, and D. Leipold,“A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones,”IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2469-2482, Dec. 2005.
E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, and F. Svelto, “A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 824-834, Mar. 2009.
A. Swaminathan, A. Panigada, E. Masry, and I. Galton, “A digital re-quantizer with shaped requantization noise that remains well behaved after nonlinear distortion,” IEEE Trans. Signal Process., vol 55, no. 11, pp. 5382-5394, Nov. 2007
E. Temporiti, G. Albasini, I. Bietti, and R. Castello, “A 700-kHz bandwidth ΔΣ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1446-1454, Sep. 2004.
J. Yu, F. F. Dai, and R. C. Jaeger, “A 12-bit Vernier ring time-to-digital converter in 0.13 'μm' CMOS technology,”IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 830-842, Apr. 2010.
P. Dudek, S. Szczepanski, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000.
L. Vercesi, A. Liscidini, and R. Castello, “Two-dimensions Vernier time-to-digital converter,” IEEE J. Solid-State Circuits, vol. 45, no 8, pp. 1504-1512, Aug. 2010.
Z. Cheng, X. Zheng, M. J. Deen, H. Peng, “Recent developments and design challenges of high-performance ring oscillator CMOS time-to-digital converters,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 235-251, Jan. 2016.
M. Z. Straayer, and M. H. Perrott, “A multi-path gated ring oscillator TDC with first-order noise shaping,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1089-1098, Apr. 2009.
A. Elshazly, S. Rao, B. Young, and P. K. Hanumolu, “A noise-shaping time-to digital converter using switched-ring oscillators─ analysis, design, and measurement techniques,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1184-1197, May. 2014.
M. Lee, and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769-777, Apr. 2008.
S.-K. Lee, Y.-H. Seo, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18'μm' CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2874-2881, Dec. 2010.
K. S. Kim, W. S. Yu, and S. H. Cho, “A 9 bit, 1.12 ps resolution 2.5b/stage pipelined time-to-digital converter in 65 nm CMOS using time-register,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 1007-1016, Apr. 2014.
S. Kim, S. Hong, K. Chang, H. Ju, J. Shin, B. Kim, Hong-June Park, and Jae-Yoon Sim, “A 2 GHz synthesized fractional-N ADPLL with dual-referenced interpolating TDC,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 391-400, Feb. 2016.
S. Kim, S. Hong, K. Chang, H. Ju, J. Shin, B. Kim, Hong-June Park, and Jae-Yoon Sim, “A 2 GHz synthesized fractional-N ADPLL with dual-referenced interpolating TDC,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 391-400, Feb. 2016.
Y. C. Lu, C.-H. E. Wu and Y.-J. E. Chen, “A 65-nm CMOS statistical frequency ratio Calculator for frequency measurement,” IEEE Trans. Ind. Electron. (Early Access), 2020.
Y. T. Lin, Y. C. Lu and Y.-J. E. Chen, “A wide tuning range and high resolution 0.18'μm' CMOS digitally controlled ring oscillator,” in Proc. IEEE Asia-Pacific Microw. Conf., Dec. 2019, pp. 1673-1675.
M. Babaie et al., “A fully integrated bluetooth low-energy transmitter in 28 nm CMOS with 36% system efficiency at 3 dBm,” IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1547-1565, July. 2016.
Y. Liu et al., “An ultra-low power 1.7-2.7 GHz fractional-N sub-sampling digital frequency synthesizer and modulator for IoT applications in 40 nm CMOS,” IEEE Trans. Circuits Systems I, Reg. Papers, vol. 64, no. 5, pp. 1094-1105, May. 2017.
L. Bertulessi, L. Grimaldi, D. Cherniak, C. Samori and S. Levantino, “A low-phase-noise digital bang-bang PLL with fast lock over a wide lock range,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2018, pp. 252-254.
K. Un et al., “A 0.12-mm2 1.2-to-2.4-mW 1.3-to-2.65-GHz fractional-N bang-bang digital PLL with 8-'μ' s settling time for multi-ISM-band ULP radios,” IEEE Trans. Circuits Systems I, Reg. Papers, vol. 66, no. 9, pp. 3307-3316, Sept. 2019.
H. Liu et al., “A 265-'μ' W fractional-N digital PLL with seamless automatic switching sub-sampling/sampling feedback path and duty-cycled frequency-locked loop in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3478-3492, Dec. 2019.
P. Paliwal, V. Yadav, Z. Ali and S. Gupta, “A fast settling Fractional-N DPLL with loop-order switching,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 28, no. 3, pp. 714-725, Mar. 2020.
C. Hsu, M. Z. Straayer and M. H. Perrott, “A low-noise wide-BW 3.6-GHz digital ΔΣ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2776-2786, Dec. 2008.
R. B. Staszewski et al., “All-digital PLL and transmitter for mobile phones,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2469-2482, Dec. 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76990-
dc.description.abstract中文摘要
________________________________________
本論文提出使用頻率倍率計算器數位式頻率合成器,除了延遲線、數位控制振盪器和除頻器,其餘的電路皆用數位標準元件庫來合成與佈局實現。頻率倍率計算器運用統計的特性來突破製程所能提供的最小時間解析度—單一個反相器的延遲時間,並具有較好的抵抗製程變異之能力。若在不考慮面積和功率消耗的情況下,根據數學模型可推論時間解析度能透過增加樣本數來大幅度地提升。頻率倍率計算器的輸出頻率倍率值為5位元整數和10位元分數代表,在參考頻率為30 MHz下,最小能表示的頻率解析度約為29.3 kHz,當取樣窗口為7週期時,倍率值解析度約為1.116×10-3,輸出的倍率值準確度為±0.01以內。
本論文提出的數位式頻率合成器使用0.18微米CMOS製程實現,晶片面積為1.149 × 0.781 mm2。頻率倍率計算器具有大的動態範圍,而採用環形架構的數位控制振盪器。在1.8 V供應電壓下,頻率控制編碼(FCW)由5位元整數和10位元分數所組成,其頻率合成器的頻率範圍為0.63-2.34 GHz,以及頻率合成器的解析度為117.2 kHz,功率消耗為30.9-100.8 mW,並且能達到分數型合成。於鎖定流程中加入了快速鎖定技術、粗略/細微調節以及鎖定階段控制電路來加速鎖定動作,量測結果跳頻288 MHz下,只需要2.5微秒的鎖定時間達到±100 ppm以內。
關鍵字:數位式頻率合成器、頻率倍率計算器、數位控制環形振盪器、快速鎖定
zh_TW
dc.description.abstractABSTRACT
________________________________________
In this thesis, a digital frequency synthesizer by utilizing the Frequency Ratio Calculator (FRC) is proposed. The circuit is implemented by digital standard cell library, except delay line, dividers and digitally controlled oscillator. Based on the derived model and system architecture, the proposed FRC achieves high resolution in quantization and reveals fully insensitive characteristics against device/process variation of fabrication technology. The minimum resolution is not restricted to minimum gate delay of inverter chain available in a process technology. Furthermore, according to the mathematical model, the resolution of proposed FRC can be improved significantly by increasing the number of samples, without considering area and power consumption. The output frequency ratio of the FRC is a 5-bit integer and 10-bit fractional. The minimum frequency can be expressed of FRC is 29.3 kHz when the reference frequency is 30 MHz. When the window is selected to 7 periods, the ratio resolution is 1.116×10-3 and the accuracy of the output ratio is within ±0.01.
The FRC is fabricated in 0.18 'μm' CMOS technology and the chip size is 1.149 × 0.781 mm2. The digitally controlled oscillator adopts ring type architecture because the FRC features a wide dynamic range. The frequency control words(FCW) is consisted of 5-bit integer and 10-bit fractional. The power supply of the chip is 1.8 V and the synthesizer’s power consumption is 30.9 to 100.8 mW for the output frequency is from 0.63 to 2.34 GHz and the synthesizer resolution is 117.2 kHz. Besides, the synthesizer achieves fraction-N synthesis. The fast locking technique, coarse/fine adjustment and locking stage controller are added to accelerate the locking. The measurement settling time shows that a step of 288 MHz is performed in 2.5 μs within ±100 ppm from the final frequency value.
Index Terms ─ Digital Frequency Synthesizer, Frequency Ratio Calculator, Digitally controlled Oscillator, Fast Locking Technique
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:42:39Z (GMT). No. of bitstreams: 1
U0001-2907202010470000.pdf: 5831584 bytes, checksum: 8f8a4d67b2e27a6e0f4a62436bd67f7c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
________________________________________
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表格目錄 X
Chapter 1 緒論 1
1.1 研究動機 1
1.2 論文架構 2
Chapter 2 鎖相迴路簡介 3
2.1 類比式鎖相迴路簡介 3
2.2 數位式鎖相迴路簡介 6
2.2.1 數位鎖相迴路—採用除頻器架構 7
2.2.2 數位鎖相迴路—不採用除頻器架構 9
2.2.3 時間數位轉換器簡介 12
2.3 文獻回顧 16
Chapter 3 頻率倍率計算器 36
3.1 頻率倍率計算器模型 36
3.2 頻率倍率計算器架構設計 44
3.2.1 平行化架構與延遲線 44
3.2.2 切換邏輯計數電路 48
3.2.3 整數區間判斷電路 51
3.2.4 頻率倍率計算器架構 52
3.3 頻率倍率計算器行為模擬 53
3.4 頻率倍率計算器與時間數位轉換器的差異 60
Chapter 4 使用頻率倍率計算器的數位式頻率合成器 62
4.1 數位式頻率合成器系統架構設計 62
4.2 數位式頻率合成器電路區塊 65
4.2.1 數位控制環形振盪器 65
4.2.2 數位迴路濾波器 69
4.2.3 鎖定階段控制電路 71
4.2.4 除頻器 73
4.3 電路模擬結果 74
4.4 晶片佈局及腳位說明 77
Chapter 5 晶片量測 80
5.1 晶片製作與印刷電路板設計 80
5.2 量測環境 87
5.3 量測結果 88
5.3.1 數位控制環形振盪器 88
5.3.2 數位式頻率合成器 93
5.4 討論 104
Chapter 6 結論 106
參考文獻 107
dc.language.isozh-TW
dc.subject數位控制環形振盪器zh_TW
dc.subject頻率倍率計算器zh_TW
dc.subject快速鎖定zh_TW
dc.subject數位式頻率合成器zh_TW
dc.subjectFast Locking Techniqueen
dc.subjectDigital Frequency Synthesizeren
dc.subjectDigitally controlled Oscillatoren
dc.subjectFrequency Ratio Calculatoren
dc.title使用頻率倍率計算器的0.18 µm CMOS數位式頻率合成器zh_TW
dc.titleA 0.18 µm CMOS Digital Frequency Synthesizer Using Frequency Ratio Calculator
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃育賢(Yuh-Shyan Hwang),姚嘉瑜(Chia-Yu Yao),劉宗德(Tsung-Te Liu)
dc.subject.keyword數位式頻率合成器,頻率倍率計算器,數位控制環形振盪器,快速鎖定,zh_TW
dc.subject.keywordDigital Frequency Synthesizer,Frequency Ratio Calculator,Digitally controlled Oscillator,Fast Locking Technique,en
dc.relation.page111
dc.identifier.doi10.6342/NTU202002022
dc.rights.note未授權
dc.date.accepted2020-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2907202010470000.pdf
  未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved