Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷(Yu-Ting Hsu)
dc.contributor.authorYu-Jen Chenen
dc.contributor.author陳譽仁zh_TW
dc.date.accessioned2021-05-19T17:50:29Z-
dc.date.available2021-11-04
dc.date.available2021-05-19T17:50:29Z-
dc.date.copyright2019-11-04
dc.date.issued2019
dc.date.submitted2019-10-09
dc.identifier.citationAhern, J. (2011). From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landscape and Urban Planning, 100, 341-343. doi:10.1016/J.LANDURBPLAN.2011.02.021
Almoghathawi, Y., Barker, K., and Albert, L. A. (2019). Resilience-driven restoration model for interdependent infrastructure networks. Reliability Engineering & System Safety, 185, 12-23. doi:10.1016/J.RESS.2018.12.006
Batabyal, A. A., Gunderson, L. H., and Pritchard, L. (2007). Resilience and the Behavior of Large-Scale Systems. Journal of Range Management, 56, 301. doi:10.2307/4003824
Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., and von Winterfeldt, D. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19, 733-752. doi:10.1193/1.1623497
Cavdaroglu, B., Hammel, E., Mitchell, J. E., Sharkey, T. C., and Wallace, W. A. (2013). Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems. Annals of Operations Research, 203, 279-294. doi:10.1007/s10479-011-0959-3
Çelik, M., Ergun, Ö., and Keskinocak, P. (2015). The Post-Disaster Debris Clearance Problem Under Incomplete Information. Operations Research, 63, 65-85. doi:10.1287/opre.2014.1342
Fang, Y.-P. and Sansavini, G. (2019). Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience. Reliability Engineering and System Safety, 185, 1-11. doi:10.1016/j.ress.2018.12.002
Fang, Y.-P. and Zio, E. (2019). An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards. European Journal of Operational Research, 276, 1119-1136. doi:10.1016/J.EJOR.2019.01.052
Fiksel, J. (2003). Designing Resilient, Sustainable Systems. Environmental Science and Technology, 37, 5330-5339. doi:10.1021/es0344819
Ghosn, M., Dueñas-Osorio, L., Frangopol, D. M., McAllister, T. P., Bocchini, P., Manuel, L., Ellingwood, B. R., Arangio, S., Bontempi, F., Shah, M., Akiyama, M., Biondini, F., Hernandez, S., and Tsiatas, G. (2016). Performance Indicators for Structural Systems and Infrastructure Networks. Journal of Structural Engineering, 142, F4016003. doi:10.1061/(ASCE)ST.1943-541X.0001542
González, A. D., Dueñas-Osorio, L., Sánchez-Silva, M., and Medaglia, A. L. (2016). The Interdependent Network Design Problem for Optimal Infrastructure System Restoration. Computer-Aided Civil and Infrastructure Engineering, 31, 334-350. doi:10.1111/mice.12171
Henry, D. and Emmanuel Ramirez-Marquez, J. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering & System Safety, 99, 114-122. doi:10.1016/J.RESS.2011.09.002
Hosseini, S., Barker, K., and Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering and System Safety, 145, 47-61. doi:10.1016/j.ress.2015.08.006
Karakoc, D. B., Almoghathawi, Y., Barker, K., González, A. D., and Mohebbi, S. (2019). Community resilience-driven restoration model for interdependent infrastructure networks. International Journal of Disaster Risk Reduction, 101228. doi:10.1016/j.ijdrr.2019.101228
Lee, E. E., Mitchell, J. E., and Wallace, W. A. (2007). Restoration of services in interdependent infrastructure systems: A network flows approach. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 37, 1303-1317. doi:10.1109/TSMCC.2007.905859
Nan, C. and Sansavini, G. (2017). A quantitative method for assessing resilience of interdependent infrastructures. Reliability Engineering & System Safety, 157, 35-53. doi:10.1016/J.RESS.2016.08.013
NTPC iMAP. Retrieved from https://map.ntpc.gov.tw/
Nurre, S. G., Cavdaroglu, B., Mitchell, J. E., Sharkey, T. C., and Wallace, W. A. (2012). Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem. European Journal of Operational Research, 223, 794-806. doi:10.1016/J.EJOR.2012.07.010
Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43-60. doi:10.1016/J.RESS.2013.06.040
Rinaldi, S. M., Peerenboom, J. P., and Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine, 21, 11-25. doi:10.1109/37.969131
Shan, S. (2015). Rescuers search for missing in Wulai. Taipei Times.
Sharkey, T. C., Nurre, S. G., Nguyen, H., Chow, J. H., Mitchell, J. E., and Wallace, W. A. (2016). Identification and Classification of Restoration Interdependencies in the Wake of Hurricane Sandy. Journal of Infrastructure Systems, 22, 04015007. doi:10.1061/(ASCE)IS.1943-555X.0000262
Statistic on population in June 2018. (2018). from Department of Civil Affairs, New Taipei City Government
Vugrin, E. D., Warren, D. E., Ehlen, M. A., and Camphouse, R. C. (2010). A Framework for Assessing the Resilience of Infrastructure and Economic Systems. Sustainable and Resilient Critical Infrastructure Systems, 77-116. doi:10.1007/978-3-642-11405-2_3
Woods, D. D. (2015). Four concepts for resilience and the implications for the future of resilience engineering. Reliability Engineering & System Safety, 141, 5-9. doi:10.1016/J.RESS.2015.03.018
Zhang, P. and Peeta, S. (2011). A generalized modeling framework to analyze interdependencies among infrastructure systems. Transportation Research Part B: Methodological, 45, 553-579. doi:10.1016/J.TRB.2010.10.001
Zhang, X., Mahadevan, S., Sankararaman, S., and Goebel, K. (2018). Resilience-based network design under uncertainty. Reliability Engineering & System Safety, 169, 364-379. doi:10.1016/J.RESS.2017.09.009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7696-
dc.description.abstract相依基礎設施系統遭受災害之後,需要透過修復作業以回復其原始功能,本研究宗旨即為討論相依基礎設施系統的災後修復作業,並以最小化修復過程中的系統韌性為目標。為計算、規劃系統內損壞元件的修復排程並以系統韌性評估該基礎設施系統的效能,本研究考慮由道路、電力及電信系統所組成、包含各系統間複雜交互關係的相依基礎設施系統,提出以網路流為基礎的混合整數二次規劃模式。模式中以各系統提供的服務需求未滿足量評估系統的韌性損失,並將目標函數定義為最小化整體修復過程中的任性損失與需求資訊不完整的懲罰項。其中,模式透過網路流計算各基礎設施系統中的服務遞送量與受損元件修復的可行選項,並以決策變數描述系統中元件功能狀態,而其數值隨時間的變化即為修復受損元件的時序。其中,本研究與既有文獻不同處為考慮資訊傳遞與修復過程的相依性。資訊傳遞的相依性涵蓋因通訊中斷而導致需求資訊的不完整,本研究以邏輯限制式、期望系統性能損失與迭代修復過程進行考量。修復過程的相依性則與修復班隊基地能否透過路網與各基礎設施系統損壞節線連通有關,本研究係利用網路流於模式中計算,而此種相依性將直接影響到修復排程的可行性。為展示模式的能力與說明相依性對修復過程造成的影響,本研究以臺灣新北市土城區為基礎進行案例分析,利用參考當地管線資料所建立的多層相依基礎設施網路進行數值實驗,並設想兩種不同型態的破壞模式,以說明資訊傳遞與修復過程的相依性對修復過程的影響。實驗結果顯示本模式可透過系統性的觀點評估相依基礎設施系統的韌性,進而以系統韌性最佳化的角度規劃修復作業。zh_TW
dc.description.abstractThis study proposes the problem of restoring interdependent infrastructure systems after disaster impact, seeking to minimize the resilience loss and the penalty for the incomplete information of the amount of demand throughout the horizon of a restoration schedule. In order to solve the proposed problem, this study develops a mixed integer quadratic programming model, which applies the network flow method to describe the dynamics of commodity delivery, restoration crews and functional states of components in the interdependent infrastructure systems, including the roadway, electric power, and telecommunication systems. The performance of each system is defined based on the met demand for relevant service to assess resilience loss, and the objective function is defined to minimize the expected unmet demand throughout the recovery phase. This model also reflects several types of interdependencies. First, the cyber interdependency is factored by the logical constraints, the expected performance loss, and the iterative process when updating the state of certainty for the demand. Then, the restoration interdependency is addressed through the network flow method to determine the connectivity of the restoration crews from restoration depots to the disrupted components of different systems in the roadway network, which can directly affect the feasibility of a restoration schedule. In order to exemplify the capability of the model, this study conducts numerical experiments using test infrastructure networks built based on the infrastructure systems in Tucheng District, New Taipei City, Taiwan and conceives two cases of different patterns of system disruption. The results of the experiments demonstrate that the proposed model can optimize the restoration schedule based on the assessment of system resilience from a holistic perspective.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:50:29Z (GMT). No. of bitstreams: 1
ntu-108-R06521504-1.pdf: 25587204 bytes, checksum: 86ecff473db9fc3fb34959467186553f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
Table of Content ix
List of Figures xiii
List of Tables xv
Chapter 1 Introduction 1
1.1 Research motivation 1
1.1.1 Resilience 2
1.1.2 Interdependent infrastructure systems 3
1.1.3 Restoring interdependent infrastructure systems 4
1.2 Research goal 5
1.3 Thesis organization 6
Chapter 2 Literature Review 9
2.1 Resilience assessment 9
2.1.1 Resilience assessment approaches 10
2.1.2 Performance indicators for infrastructure networks 11
2.2 Interdependency categorization 12
2.3 Modeling interdependent infrastructure systems 14
2.4 Restoring interdependent infrastructure networks 15
2.5 Restoration with incomplete information 17
2.6 Restoration interdependency 18
2.7 Summary 18
Chapter 3 Model Development 21
3.1 Problem statement 21
3.1.1 Objective 22
3.1.2 Infrastructure networks 22
3.1.3 Interdependency 24
3.2 Assumptions 26
3.3 Notation 27
3.4 Problem formulation 30
3.4.1 Expected unmet demand 30
3.4.2 Objective function and initial condition 32
3.4.3 Flow conservation for commodity 33
3.4.4 Flow conservation for restoration crews 34
3.4.5 Calculating expected unmet demand 35
3.4.6 Physical interdependency 35
3.4.7 Cyber interdependency 36
3.4.8 Logical/restoration interdependency 37
3.4.9 Restoration constraints 37
3.4.10 Capacity and decision variables 37
3.4.11 Summary of model development 39
3.5 Iterative restoration process 39
Chapter 4 Numerical Experiments 41
4.1 Test infrastructure networks 42
4.2 Case study: severe telecommunication disruption 49
4.2.1 Parameters 51
4.2.2 Tradeoff between incomplete information and resilience 51
4.3 Case study: severe roadway disruption 60
4.3.1 Parameters 60
4.3.2 Feasibility of restoration process 62
Chapter 5 Conclusions 71
5.1 Research Summary 71
5.2 Future Study 73
Reference 75
dc.language.isoen
dc.title基於系統韌性最佳化之相依基礎設施災後修復作業zh_TW
dc.titleOptimizing Resilience of Restoring Disrupted Interdependent Infrastructure Systemsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee朱致遠(James C. Chu),盧宗成(Chung-Cheng Lu)
dc.subject.keyword系統韌性,基礎設施系統,相依性,災後修復,網路流模型,zh_TW
dc.subject.keywordResilience,Infrastructure systems,Interdependency,Restoration,Network flow model,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201904193
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-10-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf24.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved