請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76964完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為(Chee Wee Liu) | |
| dc.contributor.author | Yun-Ju Pan | en |
| dc.contributor.author | 潘韻如 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:41:47Z | - |
| dc.date.available | 2021-07-10T21:41:47Z | - |
| dc.date.copyright | 2020-08-12 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-07 | |
| dc.identifier.citation | Ch. 1 [1] Geoffrey Yeap, “Smart mobile SoCs driving the semiconductor industry: Technology trend, challenges and opportunities,” IEEE IEDM Tech. Dig., pp. 1.3.1-1.3.8, Dec. 2013, doi: 10.1109/IEDM.2013.6724540. [2] G. Yeap, S.S. Lin, Y.M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, J.Y. Sheu, M. Wang, X. Chen, B.R. Yang, C.P. Lin, F.C. Yang, Y.K. Leung, D.W. Lin, C.P. Chen, K.F. Yu, D.H. Chen, C.Y. Chang, H.K. Chen, P. Hung, C.S. Hou, Y.K. Cheng, J. Chang, L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo, M.H. Tsai, H.T. Lin, C.O. Chui, K.B. Huang, W. Chang, H.J. Lin, K.W. Chen, R. Chen, S.H. Sun, Q. Fu, H.T. Yang, H.T. Chiang, C.C. Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu, W.R. Lin, J. Wu, F. Lai, Y.H. Wu, B.Z. Tien, Y.C. Huang, L.C. Lu, Jun He, Y. Ku, J. Lin, M. Cao, T.S. Chang, and S.M. Jang, “5nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021µm2 SRAM cells for Mobile SoC and High Performance Computing Applications,” IEEE IEDM Tech. Dig., pp. 36.7.1-36.7.4, Dec. 2019, doi: 10.1109/IEDM19573.2019.8993577. [3] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965,” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, Sep. 2006, doi: 10.1109/N-SSC.2006.4785860. [4] D. Bhattacharya and N. K. Jha, “Ultra-High Density Monolithic 3-D FinFET SRAM With Enhanced Read Stability,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1176-1187, Aug. 2016, doi: 10.1109/TCSI.2016.2565641. [5] S.Subramanian, M. Hosseini, T. Chiarella, S. Sarkar, P. Schuddinck, B.T. Chan, D. Radisic, G. Mannaert, A. Hikavyy, E. Rosseel, F. Sebaai, A. Peter,1 T. Hopf,1 P. Morin,1 S. Wang, K. Devriendt, D. Batuk, G. T. Martinez, A. Veloso, E. Dentoni Litta, S. Baudot, Y. K. Siew, X. Zhou, B. Briggs, E. Capogreco, J. Hung, R. Koret, A. Spessot, J. Ryckaert, S. Demuynck, N. Horiguchi, and J. Boemmels, “First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers,” Proc. Symposium on VLSI Technology, TH3.1, 2020. [6] D. Yakimets, G. Eneman, P. Schuddinck, T. H. Bao, M. G. Bardon, P. Raghavan, A. Veloso, N. Collaert, A. Mercha, Diederik Verkest, Aaron Voon-Yew Thean, and K. D. Meyer, “Vertical GAAFETs for the Ultimate CMOS Scaling,” IEEE Trans. Electron Devices, vol. 62, no. 5, pp. 1433-1439, May 2015, doi: 10.1109/TED.2015.2414924. [7] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, “7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,” Proc. Symposium on VLSI Technology, TC1.2, 2020. [8] D. B. Ingerly, S. Amin, L. Aryasomayajula, A. Balankutty, D. Borst, A. Chandra, K. Cheemalapati, C.S. Cook, R. Criss, K. Enamul, W. Gomes, D. Jones, K.C. Kolluru, A. Kandas, G.-S. Kim, H. Ma, D. Pantuso, C.F. Petersburg, M. Phen-givoni, A.M. Pillai, A. Sairam3 P. Shekhar, P. Sinha, P. Stover3, A. Telang, and Z. Zell, “Foveros: 3D Integration and the use of Face-to-Face Chip Stacking for Logic Devices,” IEEE IEDM Tech. Dig., 19.6, 2019, doi: 10.1109/IEDM19573.2019.8993637. [9] B. Jovanovic, R. M. Brum, and L. Torres, “MTJ-based hybrid storage cells for normally-off and instant-on computing,” Electronic and Energy, vol. 28, no. 3, pp. 465-476, Sept. 2015, doi: 10.2298/fuee1503465j. [10] M. Cubukcu, O. Boulle, Nikolaï Mikuszeit, C. Hamelin, T. Brächer, N. Lamard, M. Cyrille, L. Buda-Prejbeanu, K. Garello, I. M. Miron, O. Klein, G. de Loubens, V. V. Naletov, J. Langer, B. Ocker, P. Gambardella, and G. Gaudin, “Ultra-Fast Perpendicular Spin-Orbit Torque MRAM,” IEEE Trans. on Magnetics, vol. 54, no. 4, pp. 1-4, April 2018, Art no. 9300204, doi: 10.1109/TMAG.2017.2772185. [11] J. Wang, H. An, Q. Zhang, H. S. Kim, D.Blaauw, and D. Sylvester, “1.03pW/b Ultra-low Leakage Voltage-Stacked SRAM for Intelligent Edge Processors,” Proc. Symposium on VLSI Technology, CM3.3, 2020. [12] T. Huynh-Bao, S. Sakhare, D. Yakimets, J. Ryckaert, A. Voon-Yew Thean, A. Mercha, D. Verkest, and P. Wambacq, “A Comprehensive Benchmark and Optimization of 5-nm Lateral and Vertical GAA 6T-SRAMs,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 643-651, Feb. 2016, doi: 10.1109/TED.2015.2504729. [13] D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J. Fédéli, C. Kopp, and L. Vivien, “25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photon. Res., vol. 7, no. 4, pp. 437-444, Apr. 2019, doi: 10.1364/PRJ.7.000437. [14] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical inter- connects,” Laser Photon. Rev. vol. 4, no. 6, pp. 751-779, Jan. 2010, doi: 10.1002/lpor.200900033. [15] Standard Solar Spectra. Accessed: June 22, 2020. [Online]. Available: https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra. [16] D. F. Edwards, “Silicon (Si) Revisited (1.4-6.0 ev),” Handbook of Optical Constants of Solids, Edward D. Palik, Ed., Academic Press, vol. 1, pp. 531-536, 1997, doi: 10.1016/B978-012544415-6.50117-5. [17] R. F. Potter, “Germanium (Ge)” in Handbook of Optical Constants of Solids, Edward D. Palik, Ed., Academic Press, vol. 3, pp. 465-478, 1997, doi: 10.1016/B978-012544415-6.50020-0. Ch. 2 [1] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp. 748-754, Oct. 1987, doi: 10.1109/JSSC.1987.1052809. [2] G. Yeap, S.S. Lin, Y.M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, J.Y. Sheu, M. Wang, X. Chen, B.R. Yang, C.P. Lin, F.C. Yang, Y.K. Leung, D.W. Lin, C.P. Chen, K.F. Yu, D.H. Chen, C.Y. Chang, H.K. Chen, P. Hung, C.S. Hou, Y.K. Cheng, J. Chang, L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo, M.H. Tsai, H.T. Lin, C.O. Chui, K.B. Huang, W. Chang, H.J. Lin, K.W. Chen, R. Chen, S.H. Sun, Q. Fu, H.T. Yang, H.T. Chiang, C.C. Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu, W.R. Lin, J. Wu, F. Lai, Y.H. Wu, B.Z. Tien, Y.C. Huang, L.C. Lu, Jun He, Y. Ku, J. Lin, M. Cao, T.S. Chang, and S.M. Jang, “5nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021µm2 SRAM cells for Mobile SoC and High Performance Computing Applications,” IEEE IEDM Tech. Dig., pp. 36.7.1-36.7.4, Dec. 2019, doi: 10.1109/IEDM19573.2019.8993577. [3] M.-S. Kim, N. Harada, Y. Kikuchi, J. Boemmels, J. Mitard, T. Huynh-Bao, P. Matagne, Z. Tao, , W. Li, K. Devriendt, L.-A. Ragnarsson, C. Lorant, F. Sebaai, C. Porret, E. Rosseel, A. Dangol, D. Batuk, G. Martinez-Alanis, J. Geypen1, N. Jourdan1, A. Sepulveda, H. Puliyalil, G. Jamieson, M. van der Veen, L. Teugels, Z. El-Mekki, E. Altamirano-Sanchez, Y. Li, H.Nakamura, D. Mocuta, and F. Masuoka, “12-EUV Layer Surrounding Gate Transistor (SGT) for Vertical 6-T SRAM: 5-nm-class Technology for Ultra-Density Logic Devices,” Proc. Symposium on VLSI Technology, pp. T198-T199, Jun. 2019, doi: 10.23919/VLSIT.2019.8776532. [4] S. M. Salahuddin, K. A. Shaik, A. Gupta, B. Chava, M. Gupta, P. Weckx, J. Ryckaert, and A. Spessot, “SRAM With Buried Power Distribution to Improve Write Margin and Performance in Advanced Technology Nodes,” IEEE Electron Device Letters, vol. 40, no. 8, pp. 1261-1264, Aug. 2019, doi: 10.1109/LED.2019.2921209. [5] A. Gupta, S. Kundu, L. Teugels, J. Bommels, C. Adelmann, N. Heylen, G. Jamieson, O. V. Pedreira, I. Ciofi, B. Chava, C. J. Wilson, and Z. Tokei, “High-Aspect-Ratio Ruthenium Lines for Buried Power Rail,” IEEE International Interconnect Technology Conference (IITC), pp. 4-6, Jun. 2018, doi: 10.1109/IITC.2018.8430415. [6] Shibesh Dutta, Shreya Kundu, Anshul Gupta, Geraldine Jamieson, Juan Fernando Gomez Granados, Jürgen Bömmels, Christopher J. Wilson, Zsolt T˝okei, and Christoph Adelmann, “Highly Scaled Ruthenium Interconnects,” IEEE Electron Device Letters, s, vol. 38, no. 7, pp. 949-951, July 2017, doi: 10.1109/LED.2017.2709248. [7] S. Subramanian, M. Hosseini, T. Chiarella, S. Sarkar, P. Schuddinck, B.T. Chan, D. Radisic, G. Mannaert, A. Hikavyy, E. Rosseel, F. Sebaai, A. Peter, T. Hopf, P. Morin, S. Wang, K. Devriendt, D. Batuk, G. T. Martinez, A. Veloso, E. Dentoni Litta, S. Baudot, Y. K. Siew, X. Zhou, B. Briggs, E. Capogreco, J. Hung, , R. Koret, A. Spessot, J. Ryckaert, S. Demuynck, N. Horiguchi, and J. Boemmels, “First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers,” Proc. Symposium on VLSI Technology, TH3.1, Jun. 2020. [8] C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, O. Lemonnier, K. Ribaud, J.M. Hartmann, and P. Lyan, “Optimization of H2 thermal annealing process for the fabrication of ultra-low loss sub-micron silicon-on-insulator rib waveguides,” SPIE Silicon Photonics XIII, vol. 10537, pp. 1053706, Feb. 2018, doi: https://doi.org/10.1117/12.2289564. [9] T. Huynh-Bao, S. Sakhare, D. Yakimets, J. Ryckaert, A. V. Thean, A. Mercha, D Verkest, and P. Wambacq, “A Comprehensive Benchmark and Optimization of 5-nm Lateral and Vertical GAA 6T-SRAMs,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 643-651, Feb. 2016. doi: 10.1109/TED.2015.2504729. [10] 7 nm lithography process. Accessed: June 22, 2020. [Online]. Available: https://en.wikichip.org/wiki/7_nm_lithography_process?fbclid=IwAR30L9WdlP1ZbESkFqZrUcCEB79UBfTI7dL1zehl98w1skynpKKjfk5GaV4 [11] TSMC Starts 5-Nanometer Risk Production. Accessed: June 22, 2020. [Online]. Available: https://fuse.wikichip.org/news/2207/tsmc-starts-5-nanometer-risk-production/ [12] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, and K. Marla, “A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects,” IEEE IEDM Tech. Dig., pp. 29.1.1-29.1.4, Dec. 2017, doi: 10.1109/IEDM.2017.8268472. [13] S.Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita, C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S. Mor, K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang, C.J. Lin, C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen, R. Chen, C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen, M.H. Tsai, K.S. Chen, Y. Ku, and S. M. Jang, “A 7nm CMOS platform technology featuring 4th generation FinFET transistors with a 0.027m2 high density 6-T SRAM cell for mobile SoC applications,” IEEE IEDM Tech. Dig., pp. 2.6.1-2.6.4, Dec. 2016, doi: 10.1109/IEDM.2016.7838333. [14] W.C. Jeong, S. Maeda, H.J. Lee, K.W. Lee, T.J. Lee, D.W. Park, B.S. Kim, J.H. Do, T. Fukai, D.J. Kwon, K.J. Nam, W.J. Rim, M.S. Jang, H.T. Kim, Y.W. Lee, J.S. Park, E.C. Lee, D.W. Ha, C.H. Park, H.-J. Cho, S.-M. Jung, and H.K. Kang, “True 7nm Platform Technology featuring Smallest FinFET and Smallest SRAM cell by EUV, Special Constructs and 3rd Generation Single Diffusion Break,” Proc. Symposium on VLSI Technology, pp. 59-60, Jun. 2018, doi: 10.1109/VLSIT.2018.8510682. [15] S. Narasimha et al., “A 7nm CMOS technology platform for mobile and high performance compute application,” IEEE IEDM Tech. Dig., pp. 29.5.1-29.5.4, Dec. 2017, doi: 10.1109/IEDM.2017.8268476. [16] P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert, D. Jang, D. Yakimets, A. Gupta, B. Parvais, J. Ryckaert, D. Verkest, and A. Mocuta, “Device-, Circuit- Block-level evaluation of CFET in a 4 track library,” Proc. Symposium on VLSI Technology, pp. T204-T205, Jun. 2019, doi: 10.23919/VLSIT.2019.8776513. Ch. 3 [1] R. Wang, J. Zhuge, R. Huang, T. Yu, J. Zou, D. W. Kim, D. Park, and Y. Wang, “Investigation on variability in metal-gate Si nanowire MOS- FETs: Analysis of variation sources and experimental characterization,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 175-178, Aug. 2011, doi: 10.1109/TED.2011.2115246. [2] T. Huynh-Bao, S. Sakhare, D. Yakimets, J. Ryckaert, A. V. Thean, A. Mercha, D Verkest, and P. Wambacq, “A Comprehensive Benchmark and Optimization of 5-nm Lateral and Vertical GAA 6T-SRAMs,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 643-651, Feb. 2016. doi: 10.1109/TED.2015.2504729. [3] H. Nam and C. Shin, “Impact of Current Flow Shape in Tapered (Versus Rectangular) FinFET on Threshold Voltage Variation Induced by Work-Function Variation,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2007-2011, June 2014, doi: 10.1109/TED.2014.2318696. [4] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, and K. Marla, “A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects,” IEEE IEDM Tech. Dig., pp. 29.1.1-29.1.4, Dec. 2017, doi: 10.1109/IEDM.2017.8268472. [5] G. Masetti, M. Severi, and S. Solmi, “Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon,” IEEE Trans. Electron Devices, vol. ED-30, no. 7, pp. 764–769, Jul. 1983, doi: 10.1109/T-ED.1983.21207. [6] J. Mazurier, O. Weber, F. Andrieu, A. Toffoli, O. Rozeau, T. Poiroux, F. Allain, P. Perreau, C. Fenouillet-Beranger, O. Thomas, M. Belleville, and O. Faynot, “On the Variability in Planar FDSOI Technology: From MOSFETs to SRAM Cells,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2326-2336, Aug. 2011, doi: 10.1109/TED.2011.2157162. [7] D. Nagy, G. Indalecio, A. J. García-Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, “Metal Grain Granularity Study on a Gate-All-Around Nanowire FET,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5263-5269, Dec. 2017, doi: 10.1109/TED.2017.2764544. [8] H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part I: Modeling, Analysis, and Experimental Validation,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2504-2514, Oct. 2010, doi: 10.1109/TED.2010.2063191. [9] K. Ko, M. Kang, J. Jeon, and H. Shin, “Compact Model Strategy of Metal-Gate Work-Function Variation for Ultrascaled FinFET and Vertical GAA FETs,” IEEE Trans. Electron Devices, vol. 66, no. 3, pp. 1613-1616, March 2019, doi: 10.1109/TED.2019.2891677. [10] A. Sheikholeslami, “Process Variation and Pelgrom's Law [Circuit Intuitions],” IEEE Solid-State Circuits Magazine, vol. 7, no. 1, pp. 8-9, Feb. 2015, doi: 10.1109/MSSC.2014.2369331. [11] C. Shin, “Advanced MOSFET designs and implications for SRAM scaling”, Dr. Diss., UC Berkeley, pp.81, 2011. [12] K. Ishibashi and K. Osada, “Low power and reliable SRAM memory cell and array design,” Springer Series in Advanced Microelectronics, vol. 31, pp. 16-19, 2011, doi: 10.1007/978-3-642-19568-6. [13] S.Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita, C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S. Mor, K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang, C.J. Lin, C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen, R. Chen, C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen, M.H. Tsai, K.S. Chen, Y. Ku, and S. M. Jang, “A 7nm CMOS platform technology featuring 4th generation FinFET transistors with a 0.027um2 high density 6-T SRAM cell for mobile SoC applications,” IEEE IEDM Tech. Dig., pp. 2.6.1-2.6.4, Dec. 2016, doi: 10.1109/IEDM.2016.7838333. [14] H. Pilo, C.A. Adams, I. Arsovski, R. M. Houle, S. M. Lamphier, M. M. Lee, F. M. Pavlik, S. N. Sambatur, A. Seferagic, R. Wu, and M. I. Younus, “A 64Mb SRAM in 22nm SOI technology featuring fine-granularity power gating and low-energy power-supply-partition techniques for 37% leakage reduction,” IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 322-323, Feb. 2013, doi: 10.1109/ISSCC.2013.6487753. [15] T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, Y. Kim, K.-H. Baek, S. Baek, S.-K. Oh, J. Jung, S. Kim, G. Kim, J. Kim, Y. Lee, S.-P. Sim, J. S.Yoon, K.-M. Choi, H. Won, and J. Park, “A 14 nm FinFET 128 Mb SRAM With VMIN Enhancement Techniques for Low-Power Applications,” IEEE ISSCC Dig. Tech. Papers, vol. 50, no. 1, pp. 158-169, Jan. 2015, doi: 10.1109/JSSC.2014.2362842. [16] D. C. Daly, L. C. Fujino and K. C. Smith, “Through the Looking Glass - The 2018 Edition: Trends in Solid-State Circuits from the 65th ISSCC,” IEEE Solid-State Circuits Magazine, vol. 10, no. 1, pp. 30-46, 2018, doi: 10.1109/MSSC.2017.2771103. [17] Y. Wu, F. Ding, D. Connelly, M. Chiang, J. F. Chen and T. K. Liu, “Simulation-Based Study of High-Density SRAM Voltage Scaling Enabled by Inserted-Oxide FinFET Technology,” IEEE Trans. Electron Devices, vol. 66, no. 4, pp. 1754-1759, April 2019, doi: 10.1109/TED.2019.2900921. Ch. 4 [1] D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz High-Responsivity Ge Photodetectors Grown by RPCVD,” IEEE Photonics Technology Letters, vol. 21, no. 10, pp. 672-674, May 2009, doi: 10.1109/LPT.2009.2016761. [2] D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photon. Res. vol. 7, no. 4, pp. 437-444, Apr. 2019, doi: 10.1364/PRJ.7.000437. [3] C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-Bandwidth and High-Responsivity Top-Illuminated Germanium Photodiodes for Optical Interconnection,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1183-1187, March 2013, doi: 10.1109/TED.2013.2241066. [4] C. Li, B. Li, S. Qin, J. Su, X. He, and X. Guo, “Effects of Interface States on Ge-On-SOI Photodiodes,” IEEE Journal of the Electron Devices Society, vol. 7, pp. 7-12, Mar. 2019, doi: 10.1109/JEDS.2018.2872037. [5] W.-S. Jung, J.-H. Park, A. Nainani, D. Nam, and K. C. Saraswat, “Fluorine passivation of vacancy defects in bulk germanium for Ge metal-oxide-semiconductor field-effect transistor application,” Appl. Phys. Lett., vol. 101, no. 7, pp. 072104, Aug. 2012, doi: 10.1063/1.4746389. [6] D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett., vol. 95, no. 26, pp. 261105, Dec. 2009, doi: 10.1063/1.3279129. [7] M. Oehmea, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett., vol. 89, no. 7, pp. 071117, Aug. 2006, doi: 10.1063/1.2337003. [8] Roy F. Potter, “Germanium (Ge)” in Handbook of Optical Constants of Solids, Edward D. Palik, Ed., Academic Press, vol. 3, pp. 465-478, 1997, doi: 10.1016/B978-012544415-6.50020-0. [9] Calculating absorbed optical power - Simple method. Accessed: June 23, 2020. [Online]. Available: https://support.lumerical.com/hc/en-us/articles/360034915673 [10] G. Masetti, M. Severi, and S. Solmi, “Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon,” IEEE Trans. Electron Devices, vol. ED-30, no. 7, pp. 764–769, Jul. 1983, doi: 10.1109/T-ED.1983.21207. [11] D. B. Cuttriss, “Relation between surface concentration and average conductivity in diffused layers in germanium,” The Bell System Technical Journal, vol. 40, no. 2, pp. 509-521, Mar. 1961, doi: 10.1002/j.1538-7305.1961.tb01627.x. [12] E. Gaubas and J. Vanhellemont, “Comparative study of carrier lifetime dependence on dopant concentration in silicon and germanium,” J. Electrochem. Soc., vol. 154, no. 3, pp. H231-H238, Jan. 2007, doi: 10.1149/1.2429031. [13] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge: Cambridge University Press, pp. 25, 2009, doi: 10.1017/CBO9781139195065. [14] J. J. Sheng, D. Leonhardt, S. M. Hana, S. W. Johnston, J. G. Cederberg, and M. S. Carroll, “Empirical correlation for minority carrier lifetime to defect density profile in germanium on silicon grown by nanoscale interfacial engineering,” J. Vac. Sci. Technol. B, vol. 31, no. 5, pp. 051201, Sep. 2013, doi: 10.1116/1.4816488. [15] R. Duffy, M. Shayesteh, I. Kazadojev and R. Yu, “Germanium doping challenges,” International Workshop on Junction Technology (IWJT), pp. 16-21, Jun. 2013, doi: 10.1109/IWJT.2013.6644495. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76964 | - |
| dc.description.abstract | 半導體產業之技術節點一向依循著摩爾定律,透過縮小電晶體尺寸以達到更高效能的元件,為了克服尺寸微縮困境如短通道效應,三維結構之電晶體如:鰭式場效電晶體 (FinFET) 與環繞式閘極場效電晶體 (GAAFET) 相繼被提出,提供更佳的閘極控制能力以降低元件功耗。隨著人工智慧、物聯網及自動駕駛的發展,電腦高速運算能力的需求增加,製作出高效能及低功耗的元件為當務之急,而單晶片上的高速記憶體扮演重要的角色,在現今系統單晶片及處理器中,靜態隨機存取記憶體 (static random access memory, SRAM) 佔據了高達八成的面積,因此若能有效降低記憶體單元面積,便可在有限面積下塞入更多記憶體單元,以達到更高效能的需求。 本論文第一部分提出一嶄新的結構以應用於高密度六電晶體靜態隨機存取記憶體 (6T-SRAM),並做設計與技術協同最佳化 (design technology co-optimization, DTCO) 來延續記憶體微縮,將四個N型垂直環繞式閘極場效電晶體堆疊於兩個P型鰭式場效電晶體,達到只佔兩電晶體面積 (2T) 之單元面積,因此稱之為佔兩電晶體面積之靜態隨機存取記憶體 (2T (footprint) SRAM),並建構完整的製程模擬來探討其結構之可行性。根據台積電7奈米與5奈米節點設計規則,記憶體單元面積分別可達到0.0192與0.0168平方微米,與其他研究團隊相比,佔兩電晶體面積之靜態隨機存取記憶體在同一節點下皆擁有最小的面積。 此結構最大的優勢是可以在不影響單元面積下,藉由調整P型鰭式場效電晶體鰭的高度與N型垂直環繞式閘極場效電晶體的通道長度來控制P型電晶體與N型電晶體的電流強度。隨著電晶體持續微縮,製程變異對元件的影響變得無法忽略,因此,我們在元件模擬中也考量了閘極金屬功函數變異,模擬佔兩電晶體面積之靜態隨機存取記憶體之寫入與讀取的靜態雜訊邊界 (static noise margin, SNM),並將其做結構優化,進而找出最低工作電壓,再透過優化電晶體之臨界電壓達到更低的工作電壓,模擬結果顯示,佔兩電晶體面積之靜態隨機存取記憶體擁有極佳的最低工作電壓,並有最小的單元面積,因此可作為未來次五奈米節點之高靜態隨機存取記憶體的候選方案。 高速運算的目標之一是應用於自動駕駛,而光達具有高解析度與高偵測距離等優點,是未來實現自動駕駛的關鍵。因此,要偵測光達所發射出的雷射光,就需要好的光偵測器,而四族的鍺材料在1310/1550奈米有較高的吸收係數,並擁有低成本可與半導體製程相容等特性,成為未來光偵測器的候選材料之一。 本論文第二部分,利用磊晶於矽基板上成長p-i-n結構的鍺光偵測器,然而實驗量得截止頻寬 (3-dB bandwidth) 太低無法作為高速元件,因此模擬光生成 (optical generation) 與光響應 (photoresponse) 來探討頻寬受限的原因。模擬結果發現,消除元件大面積造成的RC限制與空乏區外的擴散電流限制可大幅改善頻寬。由於鍺直接長在矽材料上會有晶格常數不匹配的問題,因此先長一較厚的鍺緩衝層,將缺陷控制在矽鍺接面處來降低元件暗電流,達到低雜訊的應用,此外,需減少低摻雜層的載子濃度來抑制擴散電流,綜合以上所述,利用 n-i-p 結構與重摻雜P型鍺緩衝層來製作鍺光偵測器,可同時達到提高截止頻寬與降低暗電流的效果。 | zh_TW |
| dc.description.abstract | The technology trend of the semiconductor industry has always followed Moore's law to enhance the performance of field-effect transistors (FETs) by continuously scaling down the feature size. To overcome the scaling challenge like short-channel effects (SCE), 3D transistors such as FinFETs and gate-all-around FETs (GAAFETs) have been proposed to improve the gate electrostatic controllability. With the rising of high-speed computing in artificial intelligence (AI), internet of things (IoT), and autonomous vehicles, high performance and low power devices are necessary. More on-chip memory is required to meet the performance and throughput requirements. Up to 80% of the chip area in modern system on chip (SoC) and processors is occupied by static random access memory (SRAM). Therefore, the demand on SRAM size reduction becomes indispensable for high performance application. In the first part of this thesis, the design technology co-optimization (DTCO) for SRAM scaling is demonstrated by a novel architecture of high density 6T-SRAM named 2T (footprint) SRAM, which has only two transistors footprint constructed by stacking four n-type vertical GAA transistors (VFETs) on two pFinFETs. A completed process simulation to fabricate 2×2 SRAM cell array is established. The local interconnects inside the 2T (footprint) SRAM cell are all implemented within the bottom pFinFETs footprint. The bitcell area of 0.0192 m2 and 0.0168 m2 are achieved for 7 nm and 5 nm nodes, respectively, which are the smallest SRAM size as compared to other works. The advantage of 2T (footprint) SRAM is that SRAM transistor sizing can be controlled by adjusting the fin height (Hfin) of pFinFET and the gate length (Lgn) of nVFET without increasing the bitcell area. To investigate the read/write stability, the static noise margin (SNM) is analyzed considering the work function variation (WFV) as the dominant VT variation source. Lgn and Hfin is optimized by finding the minimum operating voltage (Vmin). VT retargeting by engineering work function of metal gate can further reduce Vmin resulting in Vmin of 0.58 V. 2T (footprint) SRAM has the smallest bitcell area with comparable Vmin at 5 nm node. Therefore, it becomes a promising candidate of high density SRAM for 5 nm node and beyond. One of the purposes of high-speed computing is autonomous driving. Light detection and ranging (LiDAR) is necessary for high resolution and long range detection Therefore, the development of photodetectors is required. Germanium (Ge) photodetectors become one of the candidates due to high optical absorption, low cost, and compatibility with complementary metal-oxide-semiconductor (CMOS) process. In the second part of this thesis, p-i-n Ge photodetectors epitaxially grown on Si substrate are fabricated. However, the experimental 3-dB bandwidth is too slow for high speed devices. To overcome the problems, device simulations are carried out for optical generation and photoresponse. To improve the 3-dB bandwidth, RC limit by large junction area and diffusion current limit outside the depletion region should be eliminated. Considering the dark current for low noise application, a thick Ge buffer is needed to prevent the defects generation caused by the misfit at Ge/Si interface. On the other hand, the carrier concentration of intrinsic Ge should also be reduced to increase the depletion width. Summarizing the above mentioned, a Ge on Si n-i-p photodetector with heavily doped p-Ge buffer and lightly doped i-Ge is proposed to improve 3-dB bandwidth and dark current simultaneously. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:41:47Z (GMT). No. of bitstreams: 1 U0001-0308202010464000.pdf: 4640190 bytes, checksum: d89f6cf0073d2c43b561d2d522048067 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 iii Related Publication (相關論文發表) iv 摘要 v Abstract vii Table of Contents ix List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Organization 6 1.3 Reference 7 Chapter 2 Architecture and Process Simulation of 2T (footprint) SRAM 11 2.1 Introduction 11 2.2 6T-SRAM Read/Write Operations and Stability 12 2.3 Structure Evolution of High Density 6T-SRAM 20 2.4 Process Simulation of 2T (footprint) SRAM 23 2.5 SRAM Cell and Array Layout 27 2.6 Summary 30 2.7 Reference 31 Chapter 3 Structure Design of 2T (footprint) SRAM 35 3.1 Introduction 35 3.2 Transistor Characteristics 36 3.3 Read/Write Static Noise Margin Analysis 40 3.4 Vmin Reduction Considering Work Function Variation (WFV) 43 3.5 Summary 51 3.6 Reference 52 Chapter 4 Device Simulation of Ge on Si Photodetectors 56 4.1 Introduction 56 4.2 Mechanism of Ge p-i-n Photodetectors 57 4.3 Fabrication and Experimental Results 60 4.4 Structure Design and Simulation 65 4.5 Summary 73 4.6 Reference 74 Chapter 5 Summary and Future Work 77 5.1 Summary 77 5.2 Future Work 78 | |
| dc.language.iso | en | |
| dc.subject | 設計與技術協同最佳化 | zh_TW |
| dc.subject | 靜態隨機存取記憶體 | zh_TW |
| dc.subject | 鍺光偵測器 | zh_TW |
| dc.subject | 暗電流 | zh_TW |
| dc.subject | 截止頻寬 | zh_TW |
| dc.subject | 最低工作電壓 | zh_TW |
| dc.subject | 金屬功函數變異 | zh_TW |
| dc.subject | 靜態雜訊邊界 | zh_TW |
| dc.subject | 3-dB bandwidth | en |
| dc.subject | DTCO | en |
| dc.subject | SNM | en |
| dc.subject | Work function variation (WFV) | en |
| dc.subject | Minimum operating voltage (Vmin) | en |
| dc.subject | Ge photodetector | en |
| dc.subject | SRAM | en |
| dc.subject | Dark current | en |
| dc.title | 佔兩電晶體面積之高密度靜態隨機存取記憶體與鍺光偵測器元件模擬 | zh_TW |
| dc.title | Simulation of High Density 2T (footprint) SRAM and Ge Photodetectors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林楚軒(Chu-Hsuan Lin),孟慶宗(Chin-Chun Meng),林吉聰(Jyi-Tsong Lin) | |
| dc.subject.keyword | 靜態隨機存取記憶體,設計與技術協同最佳化,靜態雜訊邊界,金屬功函數變異,最低工作電壓,鍺光偵測器,截止頻寬,暗電流, | zh_TW |
| dc.subject.keyword | SRAM,DTCO,SNM,Work function variation (WFV),Minimum operating voltage (Vmin),Ge photodetector,3-dB bandwidth,Dark current, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202002251 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202010464000.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
