Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76961Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 方俊民(Jim-Min Fang) | |
| dc.contributor.author | Tung-Yu Wu | en |
| dc.contributor.author | 吳東餘 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:41:41Z | - |
| dc.date.available | 2021-07-10T21:41:41Z | - |
| dc.date.copyright | 2020-08-06 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | 1. Hajdu, SI. A note from history: Landmarks in history of cancer, part 1. Cancer 2011, 117, 1097-1102. 2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 2018, 68, 394-424. 3. Kumar, V.; Abbas, A. K.; Aster, J. C. Robbins Cotran Pathologic Basis of Disease, 9th Ed. Elsevier: 2015. 4. Baines, A. T.; Xu, D.; Der, C. J. Inhibition of Ras for cancer treatment: the search continues. Future Med. Chem. 2011, 14, 1787-1808. 5. Macaluso, M.; Russo, G.; Cinti, C.; Bazan, V.; Gebbia, N.; Russo, A. Ras family genes: An interesting link between cell cycle and cancer. J. Cell. Physiol. 2002, 192, 125-130. 6. Boulikas, T. Clinical overview on Lipoplatin: A successful liposomal formulation of cisplatin. Expert Opin. Invest. Drugs. 2009, 18, 1197-1218. 7. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 2016, 116, 3436-3486. 8. Wang, Z.; Deng, Z.; Zhu, G. Emerging platinum(IV) prodrugs to combat cisplatin resistance: from isolated cancer cells to tumor microenvironment. Dalton Trans. 2019, 48, 2536-2544. 9. Pathak, R. K.; Marrache, S.; Choi, J. H.; Berding, T. B.; Dhar, S. The prodrug platin-A : Simultaneous release of cisplatin and aspirin. Angew. Chem. Int. Ed. 2014, 53, 1963-1967. 10. Tolan, D.; Gandin, V.; Morrison, L.; EI-Nahas, A.; Marzano, C.; Montagner, D.; Erxleben, A. Oxidative stress induced by Pt(IV) pro-drugs based on the cisplatin scaffold and indole carboxylic acids in axial position. Sci Rep. 2016, 6, 29367. 11. Lo Re, D.; Montagner, D.; Tolan, D.; Di Sanza, C.; Iglesias, M.; Calon, A.; Giralt, E. Increased immune cell infiltration in patient-derived tumor explants treated with traniplatin: An original Pt(IV) pro-drug based on cisplatin and tranilast. Chem. Commun. 2018, 54, 8324-8327. 12. Montagner, D.; Tolan, D.; Andriollo, E.; Gandin, V.; Marzano, C. A Pt(IV) prodrug combining chlorambucil and cisplatin: A dual-acting weapon for targeting DNA in cancer cells. Int. J. Mol. Sci. 2018, 19, 3775. 13. Chen, H.; Wang, X.; Gou A, S. Cisplatin-based platinum (IV) prodrug containing a glutathione s-transferase inhibitor to reverse cisplatin-resistance in non-small cell lung cancer. J. Inorg. Biochem. 2019, 193, 133-142. 14. Eastman, A. Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 1986, 25, 3912-3915. 15. Zamble, D. B.; Mu, D.; Reardon, J. T.; Sancar, A.; Lippard, S. J. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 1996, 35, 10004-10013. 16. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. Third row transition metals for the treatment of cancer. Philos. Trans. R. Soc., A 2015, 373, 20140185. 17. Chen, S. H.; Chang, J. Y. New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment. Int. J. Mol. Sci. 2019, 20, 4136. 18. Espósito, B. P.; Najjar, R. Interactions of antitumoral platinum-group metallodrugs with albumin. Coord. Chem. Rev. 2002, 232, 137-149. 19. Stordal, B.; Davey, M. Understanding cisplatin resistance using cellular models. IUBMB Life 2007, 59, 696-699. 20. Johnstone, T. C.; Wilson, J. J.; Lippard, S. J. Monofunctional and higher-valent platinum anticancer agents. Inorg. Chem. 2013, 52, 12234-12249. 21. Bustinza-Linares, E.; Kurzrock, R.; Tsimberidou, A. M. Salirasib in the treatment of pancreatic cancer. Future Oncol. 2010, 6, 885-891. 22. Blum, R.; Elkon, R.; Yaari, S.; Zundelevich, A.; Jacob-Hirsch, J.; Rechavi, G.; Shamir, R.; Kloog, Y. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). Cancer Res. 2007, 67, 3320-3328. 23. Halaschek-Wiener, J.; Wacheck, V.; Schlagbauer-Wadl, H.; Wolff, K.; Kloog, Y.; Jansen, B. A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol Med. 2000, 6, 693-704. 24. Haklai, R.; Elad-Sfadia, G.; Egozi, Y.; Kloog, Y. Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. Cancer Chemother. Pharmacol. 2008, 61, 89-96. 25. Weisz, B.; Giehl, K.; Gana-Weisz, M; Egozi, Y.; Ben-Baruch, G.; Marciano, D.; Gierschik, P.; Kloog, Y. A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 1999, 18, 2579-2588. 26. Yue, W.; Wang, J.; Li, Y.; Fan, P.; Santen, R. J. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int. J. Cancer 2005, 117, 746-754. 27. Beiner, M. E.; Niv, H.; Haklai, R.; Elad-Sfadia, G.; Kloog, Y.; Ben-Baruch, G. Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells. Int. J. Gynecol. Cancer 2006, 16, 200-206. 28. Goldberg, L.; Haklai, R.; Bauer, V.; Heiss, A.; Kloog, Y. New derivatives of farnesylthiosalicylic acid (salirasib) for cancer treatment: farnesylthiosalicylamide inhibits tumor growth in nude mice models. J Med. Chem. 2009, 52, 197-205. 29. Ling, Y.; Wang, Z.; Wang, X.; Li, X.; Wang, X.; Zhang, W.; Dai, H.; Chen, Li.; Zhang, Y. Hybrid molecule from Farnesylthiosalicylic acid-diamine and phenylpropenoic acid as Ras-related signaling inhibitor with potent antitumor activities. Chem Biol Drug Des 2015, 85, 145-152. 30. Whyte, D. B.; Kirschmeier, P.; Hockenberry, T. N.; Nunez-Oliva, I.; James, L.; Catino, J. J.; Bishop, W. R.; Pai J. K. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol. Chem. 1997, 272, 14459-14464. 31. Gana-Weisz, M.; Halaschek-Wiener, J.; Jansen, B.; Elad, G.; Haklai, R.; Kloog, Y. The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin Cancer Res. 2002, 8, 555-565. 32. Park, K. Controlled drug delivery systems: past forward and future back. J. Controlled Release 2014, 190, 3-8. 33. Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238-252. 34. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. 35. Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131-135. 36. Lee, R. J.; Low, P. S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta 1995, 1233, 134-144. 37. Lehtinen, J.; Raki, M.; Bergström, K. A.; Uutela, P.; Lehtinen, K.; Hiltunen, A.; Pikkarainen, J.; Liang, H.; Pitkänen, S.; Määttä, A. M.; Ketola, R. A.; Yliperttula, M.; Wirth, T.; Urtti, A. Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PLoS One 2012, 7, e41410. 38. Biswas, S.; Torchilin V. P. Nanopreparations for organelle-specific delivery in cancer. Adv. Drug Deliv. Rev. 2014, 66, 26-41. 39. Liu, X.; Huang, G. Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J. Pharm. Sci. 2013, 8, 319-328. 40. Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975-999. 41. Monteiro, N.; Martins, A.; Reis, R. L.; Neves, N. M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc., Interface 2014, 11, 20140459. 42. Huang, S. T.; Wang, Y. P.; Chen, Y. H.; Lin, C. T.; Li, W. S.; Wu, H. C. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int J Oncol. 2018, 53, 1105-1117. 43. Dos Santos, N.; Allen, C.; Doppen, A. M.; Anantha, M.; Cox, K. A. K.; Gallagher, R. C.; Karlsson, G.; Edwards, K.; Kenner, G.; Samuels, L.; Webb, M. S.; Bally, M. B. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochim. Biophys. Acta 2007, 1768, 1367-1377. 44. Stathopoulos, G. P.; Antoniou, D.; Dimitroulis, J.; Stathopoulos, J.; Marosis, K.; Michalopoulou, P. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol. 2011, 68, 945-950. 45. Casagrande, N.; De Paoli, M.; Celegato, M.; Borghese, C.; Mongiat, M.; Colombatti, A.; Aldinucci, D. Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol. Oncol. 2013, 131, 744-752. 46. Arienti, C.; Tesei, A.; Ravaioli, A.; Ratta, M.; Carloni, S.; Mangianti, S.; Ulivi, P.; Nicoletti, S.; Amadori, D.; Zoli, W. Activity of lipoplatin in tumor and in normal cells in vitro. Anticancer Drugs 2008, 19, 983-990. 47. Devarajan, P.; Tarabishi, R.; Mishra, J.; Ma, Q.; Kourvetaris, A.; Vougiouka, M.; Boulikas, T. Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res. 2004, 24, 2193-2200. 48. Bartlett, G. R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959, 234, 466-468. 49. Ishiyama, M.; Shiga, M.; Sasamoto, K.; Mizoguchi, M.; He, P. A New Sulfonated Tetrazolium Salt That Produces a Highly Water-Soluble Formazan Dye. Chem. Pharm. Bull. 1993, 41, 1118-1122. 50. Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A. L.; Pronzato, M. A. Marinari, U. M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013, 2013, 972913. 51. Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M. Glutathione levels in human tumors. Biomarkers 2012, 17, 671-691. 52. Xu, G.; Zhang, W.; Ma, M. K.; McLeod, H. L. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin. Cancer Res. 2002, 8, 2605-2611. 53. Wilson, J. J.; Lippard, S. J. Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 2014, 114, 4470-4495. 54. Stork, G.; Burgstahler, A. W. The stereochemistry of polyene cyclization. J. Am. Chem. Soc. 1955, 77, 5068-5077. 55. Platts, J. A.; Oldfield, S. P.; Reif, M. M.; Palmucci, A.; Gabano, E.; Osella, D. The RP-HPLC measurement and QSPR analysis of logP(o/w) values of several Pt(II) complexes. J. Inorg. Biochem. 2006, 100, 1199-1207. 56. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005, 4, 145-160. 57. Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. 58. Loukopoulos, P.; Kanetaka, K.; Takamura, M.; Shibata, T.; Sakamoto, M.; Hirohashi, S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 2004, 29, 193-203. 59. Da Silva, L. M.; Mattox, T. E.; Keeton, A. B.; Zhu, B.; Berry, K. L.; Musiyenko, A.; Gavin, E.; Lee, K.; Ramirez-Alcantara, V.; Maxuitenko, Y. Y.; Chen, X.; Valiyaveettil, J.; Boyd, M. R.; Scalici, J.; Rocconi, R.; Piazza, G. A. Abstract B54: Targeting constitutively active RAS signaling in high-grade serous ovarian carcinoma (HGSOC) with ADT-006, a novel small molecule that blocks RAS-effector interactions. Clin. Cancer Res. 2018, 24, B54. 60. Zhang, J. Z.; Bonnitcha, P.; Wexselblatt, E.; Klein, A. V.; Najajreh, Y.; Gibson, D.; Hambley, T. W. Facile preparation of mono-, di- and mixed-carboxylato platinum(IV) complexes for versatile anticancer prodrug design. Chemistry 2013, 19, 1672-1676. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76961 | - |
| dc.description.abstract | 癌症相關議題長期困擾著人類,隨著人口的增長和衰老,問題變得更加嚴重。 順鉑(cisplatin)為常用的抗癌藥物之一,其主要的細胞毒活性是通過與DNA中的鳥嘌呤螯合而產生。但是順鉑同時具有低選擇性等多種副作用,因此其使用受到限制。過去研究有展現出許多降低毒性的前驅藥方法。非共價前驅藥是一個突出的例子,藉由將順鉑包封在脂質體中以提高選擇性,減少副作用並獲得所需的生物分佈。 組合療法(combination therapy)搭配脂質體傳輸是提高抗癌藥物效率的好方法。法尼基硫柳酸(salirasib)是Ras蛋白抑制劑,也是抗癌藥的候選藥物。然而無法精確控制脂質體包封兩種藥物的比例成為法尼基硫柳酸和順鉑組合療法所面臨的挑戰。為了解決藥物開發的比例問題,本篇論文展現了順鉑的Pt(IV)前驅藥二羥基順鉑(oxoplatin)經由可生物裂解的鍵結與法尼基硫柳酸形成共軛藥物,用於脂質體封裝。使用這種共價鍵鍵結方法可確保兩種抗癌藥的比例,並在特定的癌症環境中以兩種藥物的形式釋放,從而增強細胞毒性的功效。本論文不僅表徵了二羥基順鉑-法尼基硫柳酸脂質體的性質,而且揭示可能的藥物釋放機理。預期此二羥基順鉑-法尼基硫柳酸共軛藥物的脂質體可以選擇性標靶癌細胞,並且展現協同或加成的毒殺效果。 | zh_TW |
| dc.description.abstract | Cancer has troubled humans for a long time, and becomes even more problematic with increasing population and aging. Cisplatin is one of commonly used anticancer drugs to cause cytotoxicity mainly by chelation with guanines in DNA. The use of cisplatin is limited due to the side effects of its nonselective nature. There are several approaches of prodrugs to lower systemic toxicity. One prominent example of noncovalent prodrugs is to encapsulate cisplatin in liposomes to improve selectivity, reduce side effect and gain the desired biodistribution. Combination therapy along with liposomal delivery is a good approach to improve the efficiency of anticancer drugs. Salirasib is a Ras protein inhibitor and candidate of anticancer agent. Though combination of salirasib and cisplatin can be applied in therapy, the proportion of two drugs for liposomal encapsulation cannot be precisely controlled. To solve this problem in drug development, herein, we demonstrate that oxoplatin, a Pt(IV) prodrug of cisplatin, can conjugate with salirasib via a bio-cleavable linker for liposomal encapsulation. This covalent linkage method ensures the ratio of two anticancer agents, which will be released as two free drugs in the specific cancer environment to enhance the efficacy of therapy. In this study, not only the property of oxoplatin-salirasib liposome was characterized, but also the mechanism for releasing drugs was determined. The liposomal oxoplatin-salirasib conjugate is expected to selectively target cancer cell and exert synergistic or additive cytotoxicity. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:41:41Z (GMT). No. of bitstreams: 1 U0001-0308202013352500.pdf: 4480591 bytes, checksum: ddfa07426651166a319e61c7153fb5a1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 I 摘要 II Abstract III Table of Contents V List of Figures IX List of Tables XI List of Schemes XII Abbreviations XIII Chapter 1. Introduction 1 1.1 Overview of cancer 1 1.2 Cause of cancer 2 1.2.1 Etiology 2 1.2.2 Pathophysiology: cancer and cell cycle 3 1.2.3 Mutation of Ras proteins 4 1.3 Chemotherapy 6 1.3.1 Cisplatin 7 1.3.2 Mechanism of cisplatin-induced cytotoxicity 8 1.3.3 Resistance of cisplatin 9 1.4 Molecularly targeted therapy 12 1.4.1 Salirasib 12 1.4.2 Mechanism of salirasib 13 1.5 Liposomal drug delivery system 15 1.5.1 Features of liposomal drug delivery system 15 1.5.2 Intracellular delivery of liposomes 18 1.5.3 Composition of liposome 20 1.5.4 Lipoplatin 21 1.6 Determination of phospholipid content 23 1.7 Determination of biological activity 23 1.8 Aim of this study 24 Chapter 2. Results and Discussion 26 2.1 Design and synthesis of oxoplatin-salirasib anticancer drug 26 2.1.1 Principle of design 26 2.1.2 Synthesis of oxoplatin-salirasib conjugate (opsal 4) 27 2.1.3 Characterization of opsal 4 30 2.1.4 Stability studies of conjugate 4 33 2.1.5 Reduction test of conjugate 4 with ascorbic acid 36 2.1.6 Enzymatic hydrolysis of conjugate 4 with carboxylesterase 38 2.1.7 Mechanism for release of two drugs by reduction of oxoplatin-salirasib conjugate 40 2.2 Preparation and characterization of opsal 4-loaded liposomes 41 2.3 Evaluation of biological activity 45 2.4 Conclusion and prospect 50 Chapter 3. Experimental Section 52 3.1 General method 52 3.2 Synthetic procedures and characterization of compounds 53 3.3 Stability studies of conjugate 4 57 3.4 Reduction test of conjugate 4 with ascorbic acid 58 3.5 Enzymatic hydrolysis of conjugate 4 with carboxylesterase 59 3.6 Preparation of 4@liposomes 59 3.7 Characterization of 4@liposomes 60 3.8 Determination of phospholipid concentration in liposome by Bartlett’s assay 61 3.9 Bioassay of cytotoxicity to cancer cells 62 3.9.1 Cell culture 62 3.9.2 In vitro cytotoxic activity 62 Chapter 4. References 64 Appendix-1 73 Appendix-2 78 Appendix-3 84 | |
| dc.language.iso | en | |
| dc.subject | 共軛抗癌藥物 | zh_TW |
| dc.subject | 順鉑 | zh_TW |
| dc.subject | 法尼基硫柳酸 | zh_TW |
| dc.subject | 脂質體傳輸 | zh_TW |
| dc.subject | 前驅藥 | zh_TW |
| dc.subject | conjugated anticancer drug | en |
| dc.subject | cisplatin | en |
| dc.subject | salirasib | en |
| dc.subject | prodrug | en |
| dc.subject | liposomal delivery | en |
| dc.title | 利用脂質體傳輸二羥基順鉑−法尼基硫柳酸共軛抗癌藥物
| zh_TW |
| dc.title | Oxoplatin−Salirasib Conjugated Anticancer Drugs for Liposomal Co-Delivery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳漢忠(Han-Chung Wu),王宗興(Tsung-Shing Wang),陳振中(Chun-Chung Chan) | |
| dc.subject.keyword | 順鉑,法尼基硫柳酸,脂質體傳輸,共軛抗癌藥物,前驅藥, | zh_TW |
| dc.subject.keyword | cisplatin,salirasib,liposomal delivery,conjugated anticancer drug,prodrug, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU202002264 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0308202013352500.pdf Restricted Access | 4.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
